test_learning_rate_decay.py 5.2 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16 17
import math
import unittest
18

19
import paddle.fluid as fluid
20
import paddle.fluid.framework as framework
21
import paddle.fluid.learning_rate_decay as lr_decay
Q
Qiao Longfei 已提交
22 23 24 25 26 27 28


def exponential_decay(learning_rate,
                      global_step,
                      decay_steps,
                      decay_rate,
                      staircase=False):
Y
Yu Yang 已提交
29
    exponent = global_step / decay_steps
Q
Qiao Longfei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    if staircase:
        exponent = math.floor(exponent)
    return learning_rate * decay_rate**exponent


def natural_exp_decay(learning_rate,
                      global_step,
                      decay_steps,
                      decay_rate,
                      staircase=False):
    exponent = float(global_step) / float(decay_steps)
    if staircase:
        exponent = math.floor(exponent)
    return learning_rate * math.exp(-1 * decay_rate * exponent)


def inverse_time_decay(learning_rate,
                       global_step,
                       decay_steps,
                       decay_rate,
                       staircase=False):
    temp = float(global_step) / float(decay_steps)
    if staircase:
        temp = math.floor(temp)
    return learning_rate / (1 + decay_rate * temp)


57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
def polynomial_decay(learning_rate,
                     global_step,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
    if cycle:
        div = math.ceil(global_step / float(decay_steps))
        if div == 0:
            div = 1
        decay_steps = decay_steps * div
    else:
        global_step = min(global_step, decay_steps)
    return (learning_rate - end_learning_rate) * \
           ((1 - float(global_step) / float(decay_steps)) ** power) + end_learning_rate


def piecewise_decay(global_step, boundaries, values):
    assert len(boundaries) + 1 == len(values)
    for i in range(len(boundaries)):
        if global_step < boundaries[i]:
            return values[i]
    return values[len(values) - 1]
Q
Qiao Longfei 已提交
80

81 82 83

class TestLearningRateDecay(unittest.TestCase):
    def check_decay(self, python_decay_fn, fluid_decay_fn, kwargs):
Y
Yu Yang 已提交
84
        decayed_lr = fluid_decay_fn(**kwargs)
Q
Qiao Longfei 已提交
85 86 87 88 89 90

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        exe.run(fluid.default_startup_program())
        for step in range(10):
91 92 93
            lr_val, = exe.run(fluid.default_main_program(),
                              feed=[],
                              fetch_list=[decayed_lr])
Y
Yu Yang 已提交
94 95 96 97 98 99 100 101
            python_decayed_lr = python_decay_fn(
                global_step=float(step), **kwargs)
            self.assertAlmostEqual(
                python_decayed_lr,
                lr_val[0],
                msg='Failed fn is {0}, Python result is {1}, Fluid result is {2}'.
                format(python_decay_fn.__name__,
                       str(python_decayed_lr), str(lr_val[0])))
Q
Qiao Longfei 已提交
102 103

    def test_decay(self):
104 105 106 107 108 109 110 111 112
        common_kwargs_true = {
            "learning_rate": 1.0,
            "decay_steps": 5,
            "decay_rate": 0.5,
            "staircase": True
        }
        common_kwargs_false = copy.deepcopy(common_kwargs_true)
        common_kwargs_false["staircase"] = False

Q
Qiao Longfei 已提交
113
        decay_fns = [
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
            (exponential_decay, lr_decay.exponential_decay, common_kwargs_true),
            (exponential_decay, lr_decay.exponential_decay,
             common_kwargs_false),
            (natural_exp_decay, lr_decay.natural_exp_decay, common_kwargs_true),
            (natural_exp_decay, lr_decay.natural_exp_decay,
             common_kwargs_false),
            (inverse_time_decay, lr_decay.inverse_time_decay,
             common_kwargs_true),
            (inverse_time_decay, lr_decay.inverse_time_decay,
             common_kwargs_false),
            (polynomial_decay, lr_decay.polynomial_decay, {
                "learning_rate": 1.0,
                "decay_steps": 5,
                "cycle": True
            }),
            (polynomial_decay, lr_decay.polynomial_decay, {
                "learning_rate": 1.0,
                "decay_steps": 5,
                "cycle": False
            }),
            (piecewise_decay, lr_decay.piecewise_decay, {
                "boundaries": [3, 6, 9],
                "values": [0.1, 0.2, 0.3, 0.4]
            }),
Q
Qiao Longfei 已提交
138 139
        ]

140 141
        for py_decay_fn, fluid_decay_fn, kwargs in decay_fns:
            print("decay_fn=" + py_decay_fn.__name__ + " kwargs=" + str(kwargs))
Q
Qiao Longfei 已提交
142 143 144
            main_program = framework.Program()
            startup_program = framework.Program()
            with framework.program_guard(main_program, startup_program):
145
                self.check_decay(py_decay_fn, fluid_decay_fn, kwargs)
Q
Qiao Longfei 已提交
146 147 148 149


if __name__ == '__main__':
    unittest.main()