matmul_mkldnn_op.cc 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

using dnnl::memory;
using dnnl::primitive;
using platform::to_void_cast;
using framework::DataLayout;
using platform::GetMKLDNNFormat;
using platform::MKLDNNGetDataType;
using platform::MKLDNNDeviceContext;
using framework::ExecutionContext;
using Tensor = framework::Tensor;

34 35 36 37 38
template <typename T>
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
// Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
// original x_dim is returned.
static framework::DDim RowMatrixDimsFromVector(const framework::DDim& x_dim) {
  return x_dim.size() > 1 ? x_dim : framework::make_ddim({1, x_dim[0]});
}

// Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
// original y_dim is returned.
static framework::DDim ColumnMatrixDimsFromVector(
    const framework::DDim& y_dim) {
  return y_dim.size() > 1 ? y_dim : framework::make_ddim({y_dim[0], 1});
}

template <typename XT, typename YT, typename OT>
class MatMulFactory {
 public:
  void CreateAndExecute(const ExecutionContext& ctx) {
    SetDNNLEngine(ctx);
    if (IsInitialized()) {
      UpdateDataPointers(ctx);
      Execute();
      SetOutputFormat(ctx);
      return;
    }
    CreateMemories(ctx);
    CreatePrimitive(ctx);
    Execute();
    SetOutputFormat(ctx);
    SetInitialized();
  }

 private:
  struct MatMulDims {
72 73
    const memory::dims x_dims, y_dims, out_dims, x_strides, y_strides,
        out_strides;
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  };

  void SetDNNLEngine(const ExecutionContext& ctx) {
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    engine_ = dev_ctx.GetEngine();
  }

  template <typename T>
  dnnl::memory CreateMemory(const memory::dims& dims,
                            const memory::dims& strides, const T* data) {
    auto md = memory::desc(dims, MKLDNNGetDataType<T>(), strides);
    return dnnl::memory(md, engine_, to_void_cast(data));
  }

89 90 91 92 93 94 95 96 97 98 99 100 101
  bool IsOutputFused(const ExecutionContext& ctx) const {
    auto& fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
    auto& fused_transpose_Out =
        ctx.Attr<std::vector<int>>("fused_transpose_Out");
    return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
  }

  void CorrectStridesWhenFloatOutputFused(const ExecutionContext& ctx,
                                          const memory::dim N, memory::dim b,
                                          memory::dims* out_strides) const {
    if (!IsInt8<OT>() && IsOutputFused(ctx)) *out_strides = {N, b * N, 1};
  }

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
  MatMulDims GetMatmulDims(const ExecutionContext& ctx) {
    auto mat_dim_x = math::CreateMatrixDescriptor(
        RowMatrixDimsFromVector(ctx.Input<Tensor>("X")->dims()), 0,
        ctx.Attr<bool>("transpose_X"));
    auto mat_dim_y = math::CreateMatrixDescriptor(
        ColumnMatrixDimsFromVector(ctx.Input<Tensor>("Y")->dims()), 0,
        ctx.Attr<bool>("transpose_Y"));

    const auto x_bs = mat_dim_x.batch_size_;
    const auto y_bs = mat_dim_y.batch_size_;
    PADDLE_ENFORCE_EQ(x_bs > 0 && y_bs > 0 && x_bs != y_bs, false,
                      platform::errors::InvalidArgument(
                          "If batch sizes of X and Y are positive,"
                          "they have to be equal."));

    // Store 1 if both batches are zero, otherwise save the nonzero batch
    const memory::dim BS = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

    batch_size_ = 1;
    auto b = BS;
    if (BS > 1 && IsOutputFused(ctx)) {
      batch_size_ = ctx.Input<Tensor>("X")->dims()[0];
      b = BS / batch_size_;
    }
    memory::dims x_dims = {b, M, K};
    memory::dims y_dims = {b, K, N};
    memory::dims out_dims = {b, M, N};

    size_t x_size = b * M * K * sizeof(XT);
    size_t y_size = b * K * N * sizeof(YT);
    size_t out_size = b * M * N * sizeof(OT);
    offsets_ = {x_size, y_size, out_size};

    // Translate transA and transB
    memory::dims strides_x = !ctx.Attr<bool>("transpose_X")
                                 ? memory::dims{M * K, K, 1}
                                 : memory::dims{M * K, 1, M};
    memory::dims strides_y = !ctx.Attr<bool>("transpose_Y")
                                 ? memory::dims{N * K, N, 1}
                                 : memory::dims{N * K, 1, K};
    memory::dims out_strides = memory::dims{M * N, N, 1};

    CorrectStridesWhenFloatOutputFused(ctx, N, b, &out_strides);

    return {x_dims, y_dims, out_dims, strides_x, strides_y, out_strides};
150 151 152 153 154
  }

  void CreateMemories(const ExecutionContext& ctx) {
    auto matmul_dims = GetMatmulDims(ctx);

155 156 157 158
    x_mem_ = CreateMemory<XT>(matmul_dims.x_dims, matmul_dims.x_strides,
                              ctx.Input<Tensor>("X")->data<XT>());
    y_mem_ = CreateMemory<YT>(matmul_dims.y_dims, matmul_dims.y_strides,
                              ctx.Input<Tensor>("Y")->data<YT>());
159
    out_mem_ = CreateMemory<OT>(
160
        matmul_dims.out_dims, matmul_dims.out_strides,
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
        ctx.Output<Tensor>("Out")->mutable_data<OT>(ctx.GetPlace()));
  }

  float ComputeOutputScale(const ExecutionContext& ctx) {
    float scale_x = ctx.Attr<float>("Scale_x");
    float scale_y = ctx.Attr<float>("Scale_y");
    bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
    float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
    float alpha = ctx.Attr<float>("alpha");
    return alpha * scale_out / (scale_x * scale_y);
  }

  void CreatePrimitive(const ExecutionContext& ctx) {
    dnnl::primitive_attr attr;
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      constexpr unsigned tensor_wide_scale = 0;
      attr.set_output_scales(tensor_wide_scale, {scale_out});
    }

    auto matmul_d = dnnl::matmul::desc(x_mem_.get_desc(), y_mem_.get_desc(),
                                       out_mem_.get_desc());
    auto matmul_pd = dnnl::matmul::primitive_desc(matmul_d, attr, engine_);
    matmul_prim_ = dnnl::matmul(matmul_pd);
  }

  void Execute() {
    dnnl::stream stream(engine_);
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

    auto offsets = offsets_;
    unsigned bs = batch_size_;
    void* x_ptr = x_mem_.get_data_handle();
    void* y_ptr = y_mem_.get_data_handle();
    void* out_ptr = out_mem_.get_data_handle();
    for (unsigned i = 0; i < bs; i++) {
      x_mem_.set_data_handle(x_ptr);
      y_mem_.set_data_handle(y_ptr);
      out_mem_.set_data_handle(out_ptr);
      matmul_prim_.execute(stream, {
                                       {MKLDNN_ARG_SRC, x_mem_},
                                       {MKLDNN_ARG_WEIGHTS, y_mem_},
                                       {MKLDNN_ARG_DST, out_mem_},
                                   });
      x_ptr = static_cast<char*>(x_ptr) + offsets.x_offset;
      y_ptr = static_cast<char*>(y_ptr) + offsets.y_offset;
      out_ptr = static_cast<char*>(out_ptr) + offsets.out_offset;
    }
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    stream.wait();
  }

  void SetOutputFormat(const ExecutionContext& ctx) {
    using platform::MKLDNNFormatForSize;
    auto* out = ctx.Output<Tensor>("Out");
    auto format =
        MKLDNNFormatForSize(out->dims().size(), MKLDNNMemoryFormat::nchw);
    out->set_format(format);
    out->set_layout(DataLayout::kMKLDNN);
  }

  void UpdateDataPointers(const ExecutionContext& ctx) {
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Output<Tensor>("Out");
    x_mem_.set_data_handle(to_void_cast(x->data<XT>()));
    y_mem_.set_data_handle(to_void_cast(y->data<YT>()));
    out_mem_.set_data_handle(out->mutable_data<OT>(ctx.GetPlace()));
  }

  // If initialized, x memory should've been already initialized
  bool IsInitialized() { return initialized_; }

  void SetInitialized() { initialized_ = true; }

 private:
235 236 237 238 239 240
  struct memory_offsets {
    size_t x_offset;
    size_t y_offset;
    size_t out_offset;
  };

241 242 243 244 245
  dnnl::engine engine_;
  dnnl::memory x_mem_;
  dnnl::memory y_mem_;
  dnnl::memory out_mem_;
  dnnl::matmul matmul_prim_;
246 247
  memory_offsets offsets_;
  unsigned batch_size_;
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
  bool initialized_ = false;
};

template <typename XT, typename YT, typename OT>
static std::shared_ptr<MatMulFactory<XT, YT, OT>> GetPrimitiveFactory(
    const ExecutionContext& ctx) {
  const auto x_dims = framework::vectorize<int>(ctx.Input<Tensor>("X")->dims());
  const auto y_dims = framework::vectorize<int>(ctx.Input<Tensor>("Y")->dims());
  const auto& out_name = ctx.OutputName("Out");
  const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();

  const std::string key =
      platform::CreateKey(platform::ThreadIDasStr(), x_dims, y_dims, out_name);

  auto factory =
      std::static_pointer_cast<MatMulFactory<XT, YT, OT>>(dev_ctx.GetBlob(key));
  if (factory == nullptr) {
    factory = std::make_shared<MatMulFactory<XT, YT, OT>>();
    dev_ctx.SetBlob(key, factory);
  }

  return factory;
}

// Choose appropriate primitive factory implementation based on inferred
// output type (uint8, int8 or float).
template <typename XT, typename YT>
static void ExecuteMatMul(const ExecutionContext& ctx) {
  constexpr bool is_int8 = IsInt8<XT>();
  const bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
  constexpr bool fuse_relu = false;  // TODO(intel): Enable eltwise fuses
  if (!is_int8 || force_fp32_output) {
    GetPrimitiveFactory<XT, YT, float>(ctx)->CreateAndExecute(ctx);
  } else if (fuse_relu) {
    GetPrimitiveFactory<XT, YT, uint8_t>(ctx)->CreateAndExecute(ctx);
  } else {
    GetPrimitiveFactory<XT, YT, int8_t>(ctx)->CreateAndExecute(ctx);
  }
}

template <typename T>
class DNNLMatMulKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    if (ctx.HasAttr("head_number")) {
      PADDLE_ENFORCE_EQ(ctx.Attr<int>("head_number"), 1,
                        platform::errors::Unimplemented(
                            "DNNL matmul doesn't support multiple heads."));
    }
    ExecuteMatMul<T, T>(ctx);
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP_KERNEL(matmul, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::DNNLMatMulKernel<float>, ops::DNNLMatMulKernel<int8_t>,
                   ops::DNNLMatMulKernel<uint8_t>);