faster_tokenizer_op.cc 17.8 KB
Newer Older
S
Steffy-zxf 已提交
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12 13
#include "paddle/fluid/operators/string/faster_tokenizer_op.h"

S
Steffy-zxf 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include <utf8proc.h>

#include <algorithm>
#include <chrono>
#include <codecvt>
#include <fstream>
#include <iostream>
#include <numeric>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include "paddle/fluid/framework/string_array.h"

namespace paddle {
namespace operators {

using std::bad_cast;
using std::codecvt_utf8;
using std::endl;
using std::exception;
using std::ifstream;
using std::int64_t;
using std::min;
using std::runtime_error;
using std::shared_ptr;
using std::size_t;
using std::string;
43 44
using std::unordered_map;
using std::unordered_set;
S
Steffy-zxf 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
using std::vector;
using std::wstring;

const wstring kStripChars = L" \t\n\r\v\f";

inline bool IsControl(const wchar_t& ch) {
  if (ch == L'\t' || ch == L'\n' || ch == L'\r') return false;
  auto cat = utf8proc_category(ch);
  if (cat == UTF8PROC_CATEGORY_CC || cat == UTF8PROC_CATEGORY_CF) return true;
  return false;
}

inline bool IsChineseChar(const wchar_t& ch) {
  if ((ch >= 0x4E00 && ch <= 0x9FFF) || (ch >= 0x3400 && ch <= 0x4DBF) ||
      (ch >= 0x20000 && ch <= 0x2A6DF) || (ch >= 0x2A700 && ch <= 0x2B73F) ||
      (ch >= 0x2B740 && ch <= 0x2B81F) || (ch >= 0x2B820 && ch <= 0x2CEAF) ||
      (ch >= 0xF900 && ch <= 0xFAFF) || (ch >= 0x2F800 && ch <= 0x2FA1F))
    return true;
  return false;
}

inline bool IsWhiteSpace(const wchar_t& ch) {
  if (ch == L' ' || ch == L'\t' || ch == L'\n' || ch == L'\r') return true;
  auto cat = utf8proc_category(ch);
  if (cat == UTF8PROC_CATEGORY_ZS) return true;
  return false;
}

inline bool IsPunctuation(const wchar_t& ch) {
  if ((ch >= 33 && ch <= 47) || (ch >= 58 && ch <= 64) ||
      (ch >= 91 && ch <= 96) || (ch >= 123 && ch <= 126))
    return true;
  auto cat = utf8proc_category(ch);
  if (cat == UTF8PROC_CATEGORY_PD || cat == UTF8PROC_CATEGORY_PS ||
      cat == UTF8PROC_CATEGORY_PE || cat == UTF8PROC_CATEGORY_PC ||
      cat == UTF8PROC_CATEGORY_PO  // sometimes ¶ belong SO
      || cat == UTF8PROC_CATEGORY_PI || cat == UTF8PROC_CATEGORY_PF)
    return true;
  return false;
}

BasicTokenizer::BasicTokenizer(bool do_lower_case /* = true */)
    : do_lower_case_(do_lower_case) {}

wchar_t BasicTokenizer::do_lower_case(wchar_t ch) const {
  wchar_t new_ch = utf8proc_tolower(ch);
  return new_ch;
}

void BasicTokenizer::Tokenize(const string& text, vector<wstring>* res) const {
  std::wstring unicode_text;
  bool status = framework::ConvertStrToWstr(text, &unicode_text);
  if (!status) {
    // String is converted into wstring failedly.
    return;
  }
J
Jack Zhou 已提交
101 102 103 104 105 106 107 108
  std::wstring cache_text = L"";
  auto PushCacheText = [&]() {
    if (cache_text != L"") {
      res->emplace_back(cache_text);
      cache_text = L"";
    }
  };
  for (auto& ch : unicode_text) {
S
Steffy-zxf 已提交
109 110 111 112 113 114 115
    if (ch == 0 || ch == 0xfffd || IsControl(ch)) {
      continue;
    }
    if (do_lower_case_) {
      ch = do_lower_case(ch);
    }
    if (IsChineseChar(ch) || IsPunctuation(ch)) {
J
Jack Zhou 已提交
116 117
      PushCacheText();
      res->emplace_back(std::wstring{ch});
S
Steffy-zxf 已提交
118
    } else if (IsWhiteSpace(ch)) {
J
Jack Zhou 已提交
119
      PushCacheText();
S
Steffy-zxf 已提交
120
    } else {
J
Jack Zhou 已提交
121
      cache_text += ch;
S
Steffy-zxf 已提交
122 123
    }
  }
J
Jack Zhou 已提交
124
  PushCacheText();
S
Steffy-zxf 已提交
125 126 127
}

WordPieceTokenizer::WordPieceTokenizer(
128 129
    const framework::Vocab* vocab,
    const wstring& unk_token /* = L"[UNK]"*/,
S
Steffy-zxf 已提交
130 131 132 133
    const size_t max_input_chars_per_word /* = 100 */)
    : vocab_(vocab),
      unk_token_(unk_token),
      max_input_chars_per_word_(max_input_chars_per_word) {
J
Jack Zhou 已提交
134
  unk_token_id_ = vocab_->at(unk_token_);
S
Steffy-zxf 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
}

void WordPieceTokenizer::Tokenize(const wstring& text,
                                  vector<int64_t>* token_ids) const {
  size_t len = text.size();
  if (len > max_input_chars_per_word_) {
    token_ids->emplace_back(std::move(unk_token_id_));
    return;
  }

  auto it = vocab_->find(text);
  if (it != vocab_->end()) {
    token_ids->emplace_back(std::move(it->second));
    return;
  }

  size_t start = 0;
  vector<int64_t> wordpiece_ids;
  while (start < len) {
    size_t end = len;
    std::wstring cur_substr;
    int64_t cur_substr_id;
    while (start < end) {
      std::wstring sub = text.substr(start, end - start);
      if (start > 0) {
        sub = L"##" + sub;
      }
      auto it = vocab_->find(sub);
      if (it != vocab_->end()) {
        cur_substr = sub;
        cur_substr_id = it->second;
        break;
      }
      end -= 1;
    }

    if (cur_substr.empty()) {
      token_ids->emplace_back(std::move(unk_token_id_));
      return;
    } else {
      start = end;
      wordpiece_ids.emplace_back(std::move(cur_substr_id));
    }
  }
  for (auto& token_id : wordpiece_ids) {
    token_ids->emplace_back(std::move(token_id));
  }
}

J
Jack Zhou 已提交
184
BertTokenizer::BertTokenizer(const framework::Vocab* vocab,
S
Steffy-zxf 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
                             bool do_lower_case /* = false */,
                             const wstring& unk_token /* = L"[UNK]" */,
                             const wstring& pad_token /* = L"[PAD]" */,
                             const wstring& cls_token /* = L"[CLS]" */,
                             const wstring& mask_token /* = L"[MASK]" */,
                             const wstring& sep_token /* = L"[SEP]" */,
                             const string& padding_site /* = "right" */)
    : do_lower_case_(do_lower_case),
      unk_token_(unk_token),
      pad_token_(pad_token),
      cls_token_(cls_token),
      mask_token_(mask_token),
      sep_token_(sep_token),
      padding_site_(padding_site),
      vocab_(vocab),
      basic_tokenizer_(do_lower_case_),
      word_piece_tokenizer_(vocab_, unk_token) {
J
Jack Zhou 已提交
202 203 204 205 206
  unk_token_id_ = vocab_->at(unk_token_);
  pad_token_id_ = vocab_->at(pad_token_);
  cls_token_id_ = vocab_->at(cls_token_);
  mask_token_id_ = vocab_->at(mask_token_);
  sep_token_id_ = vocab_->at(sep_token_);
S
Steffy-zxf 已提交
207 208 209

  all_special_tokens_ = vector<wstring>(
      {unk_token_, pad_token_, cls_token_, mask_token_, sep_token_});
210 211 212 213 214
  all_special_token_ids_ = unordered_set<int64_t>({unk_token_id_,
                                                   pad_token_id_,
                                                   cls_token_id_,
                                                   mask_token_id_,
                                                   sep_token_id_});
S
Steffy-zxf 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
}

void BertTokenizer::Tokenize(const string& text,
                             vector<int64_t>* split_token_ids) const {
  std::vector<std::wstring> tmp_tokens;
  basic_tokenizer_.Tokenize(text, &tmp_tokens);
  if (tmp_tokens.empty()) return;
  split_token_ids->reserve(tmp_tokens.size());
  for (auto& w_token : tmp_tokens) {
    const auto& vec_size = w_token.size();
    if (vec_size == 1) {
      if (IsChineseChar(w_token[0])) {
        auto vocab_it = vocab_->find(w_token);
        if (vocab_it != vocab_->end()) {
          split_token_ids->emplace_back(std::move(vocab_it->second));
        } else {
          split_token_ids->emplace_back(std::move(unk_token_id_));
        }
      } else {
        word_piece_tokenizer_.Tokenize(w_token, split_token_ids);
      }
    } else if (vec_size > 1) {
      word_piece_tokenizer_.Tokenize(w_token, split_token_ids);
    } else {
      continue;
    }
  }
}

void BertTokenizer::BuildInputsWithSpecialTokens(
245 246
    vector<int64_t>* inputs,
    const vector<int64_t>& token_ids_0,
S
Steffy-zxf 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    const vector<int64_t>& token_ids_1 /* = vector<int64_t>() */) const {
  if (token_ids_1.size() == 0) {
    inputs->clear();
    inputs->resize(token_ids_0.size() + 2);
    inputs->at(0) = std::move(cls_token_id_);
    size_t i = 1;
    for (auto& token_id : token_ids_0) {
      inputs->at(i) = std::move(token_id);
      ++i;
    }
    inputs->at(i) = std::move(sep_token_id_);
  } else {
    inputs->clear();
    inputs->resize(token_ids_0.size() + token_ids_1.size() + 3);
    inputs->at(0) = std::move(cls_token_id_);
    size_t i = 1;
    for (auto& token_id : token_ids_0) {
      inputs->at(i) = std::move(token_id);
      ++i;
    }
    inputs->at(i) = std::move(sep_token_id_);
    ++i;
    for (auto& token_id : token_ids_1) {
      inputs->at(i) = std::move(token_id);
      ++i;
    }
    inputs->at(i) = std::move(sep_token_id_);
  }
}

int64_t BertTokenizer::GetNumSpecialTokensToAdd(const bool pair) const {
  if (pair) {
    return 3;
  } else {
    return 2;
  }
}

void BertTokenizer::CreateTokenTypeIdsFromSequences(
286 287
    vector<int64_t>* token_type_ids,
    const vector<int64_t>& token_ids_0,
S
Steffy-zxf 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301
    const vector<int64_t>& token_ids_1 /* = vector<int64_t>() */) const {
  if (token_ids_1.size() == 0) {
    vector<int64_t> tmp(token_ids_0.size() + 2, 0);
    token_type_ids->swap(tmp);
  } else {
    vector<int64_t> tmp(token_ids_0.size() + token_ids_1.size() + 3, 0);
    for (size_t i = token_ids_0.size() + 2; i < tmp.size(); i++) {
      tmp[i] = 1;
    }
    token_type_ids->swap(tmp);
  }
}

void BertTokenizer::TruncateSequence(
302 303
    vector<int64_t>* ids,
    vector<int64_t>* pair_ids,
S
Steffy-zxf 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317
    const size_t num_tokens_to_remove /* = 0 */,
    const size_t stride /* = 0 */) const {
  for (size_t i = 0; i < num_tokens_to_remove; i++) {
    if ((pair_ids->size() == 0) || (ids->size() > pair_ids->size())) {
      ids->pop_back();
    } else {
      pair_ids->pop_back();
    }
  }
}

int64_t BertTokenizer::GetPadTokenID() const { return pad_token_id_; }

int BertTokenizer::Encode(
318 319 320 321
    unordered_map<string, vector<int64_t>>* encoded_inputs,
    const string& text,
    const string& text_pair /* = "" */,
    bool is_split_into_words /* = false */,
S
Steffy-zxf 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    const size_t max_seq_len /* = 0 */,
    bool pad_to_max_seq_len /* = false */) const {
  vector<int64_t> ids;
  vector<int64_t> pair_ids;
  if (!is_split_into_words) {
    Tokenize(text, &ids);
    if (ids.empty()) return 0;
    if (text_pair != "") {
      Tokenize(text_pair, &pair_ids);
      if (pair_ids.empty()) return 0;
    }
  } else {
    std::wstring unicode_text;
    bool status_a = framework::ConvertStrToWstr(text, &unicode_text);
    if (!status_a) {
      return 0;
    }
    for (size_t i = 0; i < unicode_text.size(); i++) {
      wstring token = unicode_text.substr(i, 1);
      auto it = vocab_->find(token);
      if (it != vocab_->end()) {
        ids.emplace_back(std::move(it->second));
      } else {
        ids.emplace_back(std::move(unk_token_id_));
      }
    }
  }

  bool pair = false;
  if (pair_ids.size() != 0) {
    pair = true;
  }

  size_t len_ids = ids.size();
  size_t len_pair_ids = pair_ids.size();

  // Truncation: Handle max sequence length
  // If max_seq_len == 0, then do nothing and keep the real length.
  // If max_seq_len > 0 and
  // all the input sequence len is over the max_seq_len,
  // then we truncate it.
  size_t total_len = len_ids + len_pair_ids + GetNumSpecialTokensToAdd(pair);
  if (max_seq_len > 0 && total_len > max_seq_len) {
    TruncateSequence(&ids, &pair_ids, total_len - max_seq_len);
  }

  // Add special tokens
  vector<int64_t> sequence;
  BuildInputsWithSpecialTokens(&sequence, ids, pair_ids);
  size_t seq_len = sequence.size();
  vector<int64_t> token_type_ids;
  CreateTokenTypeIdsFromSequences(&token_type_ids, ids, pair_ids);

  // Build output dictionnary
  encoded_inputs->emplace("input_ids", sequence);
  encoded_inputs->emplace("token_type_ids", token_type_ids);
  // Check lengths
  if (max_seq_len > 0 && seq_len > max_seq_len) {
    VLOG(3) << "There is something wrong with the input sequence length."
               " Please check it.";
    // Failed.
    return 0;
  }

  // Padding
  bool needs_to_be_padded = false;
  if (pad_to_max_seq_len && max_seq_len > 0 && (seq_len < max_seq_len)) {
    needs_to_be_padded = true;
  }

  if (needs_to_be_padded) {
    int64_t difference = max_seq_len - seq_len;
    size_t pad_start = max_seq_len - 1 - difference;
    encoded_inputs->at("token_type_ids").resize(max_seq_len);
    for (size_t i = max_seq_len - 1; i > pad_start; i--) {
      encoded_inputs->at("token_type_ids")[i] = pad_token_id_;
    }

    encoded_inputs->at("input_ids").resize(max_seq_len);
    for (size_t i = max_seq_len - 1; i > pad_start; i--) {
      encoded_inputs->at("input_ids")[i] = pad_token_id_;
    }
  }
  return 1;
}

void BertTokenizer::BatchEncode(
    vector<unordered_map<string, vector<int64_t>>>* batch_encode_inputs,
    const vector<string>& batch_text,
    const vector<string>& batch_text_pair /* = vector<string>() */,
412 413
    bool is_split_into_words /* = false */,
    const size_t max_seq_len /* = 0 */,
S
Steffy-zxf 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426
    bool pad_to_max_seq_len /* = false */) const {
  bool has_text_pair = false;
  if (batch_text_pair.size() != 0) {
    has_text_pair = true;
  }

  size_t batch_size = batch_text.size();
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (size_t i = 0; i < batch_size; i++) {
    unordered_map<string, vector<int64_t>> res;
    if (has_text_pair) {
427 428 429 430 431 432
      auto status = Encode(&res,
                           batch_text[i],
                           batch_text_pair[i],
                           is_split_into_words,
                           max_seq_len,
                           pad_to_max_seq_len);
S
Steffy-zxf 已提交
433 434 435 436 437 438
      if (!status) {
        res["input_ids"] =
            std::vector<int64_t>{cls_token_id_, sep_token_id_, cls_token_id_};
        res["token_type_ids"] = std::vector<int64_t>{0, 0, 1};
      }
    } else {
439 440 441 442 443 444
      auto status = Encode(&res,
                           batch_text[i],
                           {},
                           is_split_into_words,
                           max_seq_len,
                           pad_to_max_seq_len);
S
Steffy-zxf 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

      if (!status) {
        res["input_ids"] = std::vector<int64_t>{cls_token_id_, sep_token_id_};
        res["token_type_ids"] = std::vector<int64_t>{0, 0};
      }
    }
    batch_encode_inputs->at(i) = std::move(res);
  }
}

class FasterTokenizerOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Text"), "Input", "Text", "Tokenizer");
    OP_INOUT_CHECK(ctx->HasInput("Vocab"), "Input", "Vocab", "Tokenizer");
462 463 464 465
    OP_INOUT_CHECK(
        ctx->HasOutput("InputIds"), "Output", "InputIds", "Tokenizer");
    OP_INOUT_CHECK(
        ctx->HasOutput("SegmentIds"), "Output", "SegmentIds", "Tokenizer");
S
Steffy-zxf 已提交
466 467 468 469 470 471 472 473 474 475 476 477 478

    ctx->SetOutputDim("InputIds", {-1, -1});
    ctx->SetOutputDim("SegmentIds", {-1, -1});
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(framework::proto::VarType::INT64,
                                   paddle::platform::CPUPlace());
  }

  framework::OpKernelType GetKernelTypeForVar(
479 480
      const std::string& var_name,
      const framework::Tensor& tensor,
S
Steffy-zxf 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
      const framework::OpKernelType& expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }
};

class FasterTokenizerOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Vocab",
             "(std::map<std::wstring, std::int>), The vocab to map "
             "token string to token id.");
    AddInput("Text",
             "(std::vector<std::string>), The sequence to be processed. "
             "One sequence is a string, a list of strings, "
             "or a list of integers depending on whether it "
             "has been pretokenized and converted to ids. ");
    AddInput("TextPair",
             "(std::vector<std::string>), Same as `text` argument, "
             "while it represents for the latter sequence of the "
             "sequence pair.")
        .AsDispensable();
    AddOutput("InputIds", "(Tensor), The token ids of the input text.");
    AddOutput("SegmentIds", "(Tensor), The segments ids of the input text.");
    AddAttr<bool>(
        "do_lower_case",
        "(bool), Whether or not to lowercase the input when tokenizing.")
        .SetDefault(false);
    AddAttr<bool>(
        "is_split_into_words",
        "(bool), Whether or not the input is already pre-tokenized "
        "(e.g., split into words). If set to True, the tokenizer "
        "assumes the input is already split into words (for instance, "
        "by splitting it on whitespace) which it will tokenize. This "
        "is useful for NER or token classification.")
        .SetDefault(false);
    AddAttr<int>("max_seq_len",
                 "(int), If set to a positive number, will limit the "
                 "total sequence returned so that it has a maximum length."
                 " If there are overflowing tokens, those overflowing "
                 "tokens will be added to the returned dictionary  when "
                 "`return_overflowing_tokens` is `True`.")
        .SetDefault(0);
    AddAttr<bool>("pad_to_max_seq_len",
                  "(bool), If set to `True`, the returned sequences would be"
                  " padded up to `max_seq_len` specified length according to"
                  " padding side and padding token id.")
        .SetDefault(false);
    AddComment(R"DOC(Performs tokenization and uses the tokenized tokens to "
    "prepare model inputs. It supports sequence or sequence pair as input, "
    "and batch input is not allowed.)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
540 541
REGISTER_OPERATOR(faster_tokenizer,
                  ops::FasterTokenizerOp,
S
Steffy-zxf 已提交
542 543 544
                  ops::FasterTokenizerOpMaker);

REGISTER_OP_CPU_KERNEL(faster_tokenizer, ops::FasterTokenizerKernel<int64_t>);