faster_tokenizer_op.cc 17.4 KB
Newer Older
S
Steffy-zxf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <utf8proc.h>

#include <algorithm>
#include <chrono>
#include <codecvt>
#include <fstream>
#include <iostream>
#include <numeric>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include <boost/algorithm/string.hpp>

#include "paddle/fluid/framework/string_array.h"
#include "paddle/fluid/operators/string/faster_tokenizer_op.h"

namespace paddle {
namespace operators {

using std::bad_cast;
using std::codecvt_utf8;
using std::endl;
using std::exception;
using std::ifstream;
using std::int64_t;
using std::min;
using std::runtime_error;
using std::unordered_map;
using std::unordered_set;
using std::shared_ptr;
using std::size_t;
using std::int64_t;
using std::string;
using std::vector;
using std::wstring;

const wstring kStripChars = L" \t\n\r\v\f";

inline bool IsControl(const wchar_t& ch) {
  if (ch == L'\t' || ch == L'\n' || ch == L'\r') return false;
  auto cat = utf8proc_category(ch);
  if (cat == UTF8PROC_CATEGORY_CC || cat == UTF8PROC_CATEGORY_CF) return true;
  return false;
}

inline bool IsChineseChar(const wchar_t& ch) {
  if ((ch >= 0x4E00 && ch <= 0x9FFF) || (ch >= 0x3400 && ch <= 0x4DBF) ||
      (ch >= 0x20000 && ch <= 0x2A6DF) || (ch >= 0x2A700 && ch <= 0x2B73F) ||
      (ch >= 0x2B740 && ch <= 0x2B81F) || (ch >= 0x2B820 && ch <= 0x2CEAF) ||
      (ch >= 0xF900 && ch <= 0xFAFF) || (ch >= 0x2F800 && ch <= 0x2FA1F))
    return true;
  return false;
}

inline bool IsWhiteSpace(const wchar_t& ch) {
  if (ch == L' ' || ch == L'\t' || ch == L'\n' || ch == L'\r') return true;
  auto cat = utf8proc_category(ch);
  if (cat == UTF8PROC_CATEGORY_ZS) return true;
  return false;
}

inline bool IsPunctuation(const wchar_t& ch) {
  if ((ch >= 33 && ch <= 47) || (ch >= 58 && ch <= 64) ||
      (ch >= 91 && ch <= 96) || (ch >= 123 && ch <= 126))
    return true;
  auto cat = utf8proc_category(ch);
  if (cat == UTF8PROC_CATEGORY_PD || cat == UTF8PROC_CATEGORY_PS ||
      cat == UTF8PROC_CATEGORY_PE || cat == UTF8PROC_CATEGORY_PC ||
      cat == UTF8PROC_CATEGORY_PO  // sometimes ¶ belong SO
      || cat == UTF8PROC_CATEGORY_PI || cat == UTF8PROC_CATEGORY_PF)
    return true;
  return false;
}

BasicTokenizer::BasicTokenizer(bool do_lower_case /* = true */)
    : do_lower_case_(do_lower_case) {}

wchar_t BasicTokenizer::do_lower_case(wchar_t ch) const {
  wchar_t new_ch = utf8proc_tolower(ch);
  return new_ch;
}

void BasicTokenizer::Tokenize(const string& text, vector<wstring>* res) const {
  std::wstring unicode_text;
  bool status = framework::ConvertStrToWstr(text, &unicode_text);
  if (!status) {
    // String is converted into wstring failedly.
    return;
  }
J
Jack Zhou 已提交
103 104 105 106 107 108 109 110
  std::wstring cache_text = L"";
  auto PushCacheText = [&]() {
    if (cache_text != L"") {
      res->emplace_back(cache_text);
      cache_text = L"";
    }
  };
  for (auto& ch : unicode_text) {
S
Steffy-zxf 已提交
111 112 113 114 115 116 117
    if (ch == 0 || ch == 0xfffd || IsControl(ch)) {
      continue;
    }
    if (do_lower_case_) {
      ch = do_lower_case(ch);
    }
    if (IsChineseChar(ch) || IsPunctuation(ch)) {
J
Jack Zhou 已提交
118 119
      PushCacheText();
      res->emplace_back(std::wstring{ch});
S
Steffy-zxf 已提交
120
    } else if (IsWhiteSpace(ch)) {
J
Jack Zhou 已提交
121
      PushCacheText();
S
Steffy-zxf 已提交
122
    } else {
J
Jack Zhou 已提交
123
      cache_text += ch;
S
Steffy-zxf 已提交
124 125
    }
  }
J
Jack Zhou 已提交
126
  PushCacheText();
S
Steffy-zxf 已提交
127 128 129
}

WordPieceTokenizer::WordPieceTokenizer(
J
Jack Zhou 已提交
130
    const framework::Vocab* vocab, const wstring& unk_token /* = L"[UNK]"*/,
S
Steffy-zxf 已提交
131 132 133 134
    const size_t max_input_chars_per_word /* = 100 */)
    : vocab_(vocab),
      unk_token_(unk_token),
      max_input_chars_per_word_(max_input_chars_per_word) {
J
Jack Zhou 已提交
135
  unk_token_id_ = vocab_->at(unk_token_);
S
Steffy-zxf 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
}

void WordPieceTokenizer::Tokenize(const wstring& text,
                                  vector<int64_t>* token_ids) const {
  size_t len = text.size();
  if (len > max_input_chars_per_word_) {
    token_ids->emplace_back(std::move(unk_token_id_));
    return;
  }

  auto it = vocab_->find(text);
  if (it != vocab_->end()) {
    token_ids->emplace_back(std::move(it->second));
    return;
  }

  size_t start = 0;
  vector<int64_t> wordpiece_ids;
  while (start < len) {
    size_t end = len;
    std::wstring cur_substr;
    int64_t cur_substr_id;
    while (start < end) {
      std::wstring sub = text.substr(start, end - start);
      if (start > 0) {
        sub = L"##" + sub;
      }
      auto it = vocab_->find(sub);
      if (it != vocab_->end()) {
        cur_substr = sub;
        cur_substr_id = it->second;
        break;
      }
      end -= 1;
    }

    if (cur_substr.empty()) {
      token_ids->emplace_back(std::move(unk_token_id_));
      return;
    } else {
      start = end;
      wordpiece_ids.emplace_back(std::move(cur_substr_id));
    }
  }
  for (auto& token_id : wordpiece_ids) {
    token_ids->emplace_back(std::move(token_id));
  }
}

J
Jack Zhou 已提交
185
BertTokenizer::BertTokenizer(const framework::Vocab* vocab,
S
Steffy-zxf 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
                             bool do_lower_case /* = false */,
                             const wstring& unk_token /* = L"[UNK]" */,
                             const wstring& pad_token /* = L"[PAD]" */,
                             const wstring& cls_token /* = L"[CLS]" */,
                             const wstring& mask_token /* = L"[MASK]" */,
                             const wstring& sep_token /* = L"[SEP]" */,
                             const string& padding_site /* = "right" */)
    : do_lower_case_(do_lower_case),
      unk_token_(unk_token),
      pad_token_(pad_token),
      cls_token_(cls_token),
      mask_token_(mask_token),
      sep_token_(sep_token),
      padding_site_(padding_site),
      vocab_(vocab),
      basic_tokenizer_(do_lower_case_),
      word_piece_tokenizer_(vocab_, unk_token) {
J
Jack Zhou 已提交
203 204 205 206 207
  unk_token_id_ = vocab_->at(unk_token_);
  pad_token_id_ = vocab_->at(pad_token_);
  cls_token_id_ = vocab_->at(cls_token_);
  mask_token_id_ = vocab_->at(mask_token_);
  sep_token_id_ = vocab_->at(sep_token_);
S
Steffy-zxf 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528

  all_special_tokens_ = vector<wstring>(
      {unk_token_, pad_token_, cls_token_, mask_token_, sep_token_});
  all_special_token_ids_ =
      unordered_set<int64_t>({unk_token_id_, pad_token_id_, cls_token_id_,
                              mask_token_id_, sep_token_id_});
}

void BertTokenizer::Tokenize(const string& text,
                             vector<int64_t>* split_token_ids) const {
  std::vector<std::wstring> tmp_tokens;
  basic_tokenizer_.Tokenize(text, &tmp_tokens);
  if (tmp_tokens.empty()) return;
  split_token_ids->reserve(tmp_tokens.size());
  for (auto& w_token : tmp_tokens) {
    const auto& vec_size = w_token.size();
    if (vec_size == 1) {
      if (IsChineseChar(w_token[0])) {
        auto vocab_it = vocab_->find(w_token);
        if (vocab_it != vocab_->end()) {
          split_token_ids->emplace_back(std::move(vocab_it->second));
        } else {
          split_token_ids->emplace_back(std::move(unk_token_id_));
        }
      } else {
        word_piece_tokenizer_.Tokenize(w_token, split_token_ids);
      }
    } else if (vec_size > 1) {
      word_piece_tokenizer_.Tokenize(w_token, split_token_ids);
    } else {
      continue;
    }
  }
}

void BertTokenizer::BuildInputsWithSpecialTokens(
    vector<int64_t>* inputs, const vector<int64_t>& token_ids_0,
    const vector<int64_t>& token_ids_1 /* = vector<int64_t>() */) const {
  if (token_ids_1.size() == 0) {
    inputs->clear();
    inputs->resize(token_ids_0.size() + 2);
    inputs->at(0) = std::move(cls_token_id_);
    size_t i = 1;
    for (auto& token_id : token_ids_0) {
      inputs->at(i) = std::move(token_id);
      ++i;
    }
    inputs->at(i) = std::move(sep_token_id_);
  } else {
    inputs->clear();
    inputs->resize(token_ids_0.size() + token_ids_1.size() + 3);
    inputs->at(0) = std::move(cls_token_id_);
    size_t i = 1;
    for (auto& token_id : token_ids_0) {
      inputs->at(i) = std::move(token_id);
      ++i;
    }
    inputs->at(i) = std::move(sep_token_id_);
    ++i;
    for (auto& token_id : token_ids_1) {
      inputs->at(i) = std::move(token_id);
      ++i;
    }
    inputs->at(i) = std::move(sep_token_id_);
  }
}

int64_t BertTokenizer::GetNumSpecialTokensToAdd(const bool pair) const {
  if (pair) {
    return 3;
  } else {
    return 2;
  }
}

void BertTokenizer::CreateTokenTypeIdsFromSequences(
    vector<int64_t>* token_type_ids, const vector<int64_t>& token_ids_0,
    const vector<int64_t>& token_ids_1 /* = vector<int64_t>() */) const {
  if (token_ids_1.size() == 0) {
    vector<int64_t> tmp(token_ids_0.size() + 2, 0);
    token_type_ids->swap(tmp);
  } else {
    vector<int64_t> tmp(token_ids_0.size() + token_ids_1.size() + 3, 0);
    for (size_t i = token_ids_0.size() + 2; i < tmp.size(); i++) {
      tmp[i] = 1;
    }
    token_type_ids->swap(tmp);
  }
}

void BertTokenizer::TruncateSequence(
    vector<int64_t>* ids, vector<int64_t>* pair_ids,
    const size_t num_tokens_to_remove /* = 0 */,
    const size_t stride /* = 0 */) const {
  for (size_t i = 0; i < num_tokens_to_remove; i++) {
    if ((pair_ids->size() == 0) || (ids->size() > pair_ids->size())) {
      ids->pop_back();
    } else {
      pair_ids->pop_back();
    }
  }
}

int64_t BertTokenizer::GetPadTokenID() const { return pad_token_id_; }

int BertTokenizer::Encode(
    unordered_map<string, vector<int64_t>>* encoded_inputs, const string& text,
    const string& text_pair /* = "" */, bool is_split_into_words /* = false */,
    const size_t max_seq_len /* = 0 */,
    bool pad_to_max_seq_len /* = false */) const {
  vector<int64_t> ids;
  vector<int64_t> pair_ids;
  if (!is_split_into_words) {
    Tokenize(text, &ids);
    if (ids.empty()) return 0;
    if (text_pair != "") {
      Tokenize(text_pair, &pair_ids);
      if (pair_ids.empty()) return 0;
    }
  } else {
    std::wstring unicode_text;
    bool status_a = framework::ConvertStrToWstr(text, &unicode_text);
    if (!status_a) {
      return 0;
    }
    for (size_t i = 0; i < unicode_text.size(); i++) {
      wstring token = unicode_text.substr(i, 1);
      auto it = vocab_->find(token);
      if (it != vocab_->end()) {
        ids.emplace_back(std::move(it->second));
      } else {
        ids.emplace_back(std::move(unk_token_id_));
      }
    }
  }

  bool pair = false;
  if (pair_ids.size() != 0) {
    pair = true;
  }

  size_t len_ids = ids.size();
  size_t len_pair_ids = pair_ids.size();

  // Truncation: Handle max sequence length
  // If max_seq_len == 0, then do nothing and keep the real length.
  // If max_seq_len > 0 and
  // all the input sequence len is over the max_seq_len,
  // then we truncate it.
  size_t total_len = len_ids + len_pair_ids + GetNumSpecialTokensToAdd(pair);
  if (max_seq_len > 0 && total_len > max_seq_len) {
    TruncateSequence(&ids, &pair_ids, total_len - max_seq_len);
  }

  // Add special tokens
  vector<int64_t> sequence;
  BuildInputsWithSpecialTokens(&sequence, ids, pair_ids);
  size_t seq_len = sequence.size();
  vector<int64_t> token_type_ids;
  CreateTokenTypeIdsFromSequences(&token_type_ids, ids, pair_ids);

  // Build output dictionnary
  encoded_inputs->emplace("input_ids", sequence);
  encoded_inputs->emplace("token_type_ids", token_type_ids);
  // Check lengths
  if (max_seq_len > 0 && seq_len > max_seq_len) {
    VLOG(3) << "There is something wrong with the input sequence length."
               " Please check it.";
    // Failed.
    return 0;
  }

  // Padding
  bool needs_to_be_padded = false;
  if (pad_to_max_seq_len && max_seq_len > 0 && (seq_len < max_seq_len)) {
    needs_to_be_padded = true;
  }

  if (needs_to_be_padded) {
    int64_t difference = max_seq_len - seq_len;
    size_t pad_start = max_seq_len - 1 - difference;
    encoded_inputs->at("token_type_ids").resize(max_seq_len);
    for (size_t i = max_seq_len - 1; i > pad_start; i--) {
      encoded_inputs->at("token_type_ids")[i] = pad_token_id_;
    }

    encoded_inputs->at("input_ids").resize(max_seq_len);
    for (size_t i = max_seq_len - 1; i > pad_start; i--) {
      encoded_inputs->at("input_ids")[i] = pad_token_id_;
    }
  }
  return 1;
}

void BertTokenizer::BatchEncode(
    vector<unordered_map<string, vector<int64_t>>>* batch_encode_inputs,
    const vector<string>& batch_text,
    const vector<string>& batch_text_pair /* = vector<string>() */,
    bool is_split_into_words /* = false */, const size_t max_seq_len /* = 0 */,
    bool pad_to_max_seq_len /* = false */) const {
  bool has_text_pair = false;
  if (batch_text_pair.size() != 0) {
    has_text_pair = true;
  }

  size_t batch_size = batch_text.size();
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (size_t i = 0; i < batch_size; i++) {
    unordered_map<string, vector<int64_t>> res;
    if (has_text_pair) {
      auto status =
          Encode(&res, batch_text[i], batch_text_pair[i], is_split_into_words,
                 max_seq_len, pad_to_max_seq_len);
      if (!status) {
        res["input_ids"] =
            std::vector<int64_t>{cls_token_id_, sep_token_id_, cls_token_id_};
        res["token_type_ids"] = std::vector<int64_t>{0, 0, 1};
      }
    } else {
      auto status = Encode(&res, batch_text[i], {}, is_split_into_words,
                           max_seq_len, pad_to_max_seq_len);

      if (!status) {
        res["input_ids"] = std::vector<int64_t>{cls_token_id_, sep_token_id_};
        res["token_type_ids"] = std::vector<int64_t>{0, 0};
      }
    }
    batch_encode_inputs->at(i) = std::move(res);
  }
}

class FasterTokenizerOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Text"), "Input", "Text", "Tokenizer");
    OP_INOUT_CHECK(ctx->HasInput("Vocab"), "Input", "Vocab", "Tokenizer");
    OP_INOUT_CHECK(ctx->HasOutput("InputIds"), "Output", "InputIds",
                   "Tokenizer");
    OP_INOUT_CHECK(ctx->HasOutput("SegmentIds"), "Output", "SegmentIds",
                   "Tokenizer");

    ctx->SetOutputDim("InputIds", {-1, -1});
    ctx->SetOutputDim("SegmentIds", {-1, -1});
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(framework::proto::VarType::INT64,
                                   paddle::platform::CPUPlace());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }
};

class FasterTokenizerOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Vocab",
             "(std::map<std::wstring, std::int>), The vocab to map "
             "token string to token id.");
    AddInput("Text",
             "(std::vector<std::string>), The sequence to be processed. "
             "One sequence is a string, a list of strings, "
             "or a list of integers depending on whether it "
             "has been pretokenized and converted to ids. ");
    AddInput("TextPair",
             "(std::vector<std::string>), Same as `text` argument, "
             "while it represents for the latter sequence of the "
             "sequence pair.")
        .AsDispensable();
    AddOutput("InputIds", "(Tensor), The token ids of the input text.");
    AddOutput("SegmentIds", "(Tensor), The segments ids of the input text.");
    AddAttr<bool>(
        "do_lower_case",
        "(bool), Whether or not to lowercase the input when tokenizing.")
        .SetDefault(false);
    AddAttr<bool>(
        "is_split_into_words",
        "(bool), Whether or not the input is already pre-tokenized "
        "(e.g., split into words). If set to True, the tokenizer "
        "assumes the input is already split into words (for instance, "
        "by splitting it on whitespace) which it will tokenize. This "
        "is useful for NER or token classification.")
        .SetDefault(false);
    AddAttr<int>("max_seq_len",
                 "(int), If set to a positive number, will limit the "
                 "total sequence returned so that it has a maximum length."
                 " If there are overflowing tokens, those overflowing "
                 "tokens will be added to the returned dictionary  when "
                 "`return_overflowing_tokens` is `True`.")
        .SetDefault(0);
    AddAttr<bool>("pad_to_max_seq_len",
                  "(bool), If set to `True`, the returned sequences would be"
                  " padded up to `max_seq_len` specified length according to"
                  " padding side and padding token id.")
        .SetDefault(false);
    AddComment(R"DOC(Performs tokenization and uses the tokenized tokens to "
    "prepare model inputs. It supports sequence or sequence pair as input, "
    "and batch input is not allowed.)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(faster_tokenizer, ops::FasterTokenizerOp,
                  ops::FasterTokenizerOpMaker);

REGISTER_OP_CPU_KERNEL(faster_tokenizer, ops::FasterTokenizerKernel<int64_t>);