sequence_conv_op.h 6.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <algorithm>
Y
Yi Wang 已提交
17 18 19
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/context_project.h"
#include "paddle/fluid/operators/math/math_function.h"
C
chengduoZH 已提交
20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

Q
QI JUN 已提交
27
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
28
class SequenceConvKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
29 30 31 32
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
C
chengduoZH 已提交
33
    auto filter = *context.Input<Tensor>("Filter");
34

C
chengduoZH 已提交
35
    out->mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
36
    context.ShareLoD("X", "Out");
C
chengduoZH 已提交
37

C
chengduoZH 已提交
38 39 40 41
    int context_start = context.Attr<int>("contextStart");
    int context_length = context.Attr<int>("contextLength");
    int context_stride = context.Attr<int>("contextStride");
    bool padding_trainable = context.Attr<bool>("paddingTrainable");
C
chengduoZH 已提交
42 43 44 45

    PADDLE_ENFORCE_EQ(in->lod().size(), 1UL,
                      "Only support one level sequence now.");

C
chengduoZH 已提交
46
    const Tensor* padding_data = nullptr;
C
chengduoZH 已提交
47
    if (padding_trainable) {
C
chengduoZH 已提交
48
      padding_data = context.Input<Tensor>("PaddingData");
C
chengduoZH 已提交
49 50 51 52
    }

    int up_pad = std::max(0, -context_start);
    int down_pad = std::max(0, context_start + context_length - 1);
C
chengduoZH 已提交
53
    int sequence_width = static_cast<int>(in->dims()[1]);
C
chengduoZH 已提交
54

C
chengduoZH 已提交
55
    framework::DDim col_shape = {in->dims()[0],
C
chengduoZH 已提交
56
                                 context_length * sequence_width};
C
chengduoZH 已提交
57
    Tensor col;
C
chengduoZH 已提交
58 59
    col.mutable_data<T>(col_shape, context.GetPlace());
    // Because if padding_trainable is false, padding data should be zeros.
Q
QI JUN 已提交
60 61 62
    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();
    set_zero(dev_ctx, &col, static_cast<T>(0));
63

Q
QI JUN 已提交
64
    math::ContextProjectFunctor<DeviceContext, T> seq_project_functor;
65

Q
QI JUN 已提交
66 67 68
    seq_project_functor(dev_ctx, *in, *padding_data, padding_trainable,
                        context_start, context_length, context_stride, up_pad,
                        down_pad, &col);
69

Q
QI JUN 已提交
70 71 72
    math::matmul<DeviceContext, T>(dev_ctx, col, false, filter, false,
                                   static_cast<T>(1.0), out,
                                   static_cast<T>(0.0));
C
chengduoZH 已提交
73 74 75
  }
};

Q
QI JUN 已提交
76
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
77
class SequenceConvGradKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
78 79 80
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
C
chengduoZH 已提交
81
    auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
C
chengduoZH 已提交
82
    auto* filter_g = context.Output<Tensor>(framework::GradVarName("Filter"));
C
chengduoZH 已提交
83
    auto* padding_data_g =
C
chengduoZH 已提交
84
        context.Output<Tensor>(framework::GradVarName("PaddingData"));
85
    auto* in = context.Input<LoDTensor>("X");
C
chengduoZH 已提交
86
    auto* filter = context.Input<Tensor>("Filter");
C
chengduoZH 已提交
87

C
chengduoZH 已提交
88 89 90 91
    int context_start = context.Attr<int>("contextStart");
    int context_length = context.Attr<int>("contextLength");
    int context_stride = context.Attr<int>("contextStride");
    bool padding_trainable = context.Attr<bool>("paddingTrainable");
C
chengduoZH 已提交
92

93
    PADDLE_ENFORCE_EQ(in->lod().size(), 1UL,
C
chengduoZH 已提交
94
                      "Only support one level sequence now.");
95
    auto lod_g_level_0 = in->lod()[0];
C
chengduoZH 已提交
96

C
chengduoZH 已提交
97 98
    int up_pad = std::max(0, -context_start);
    int down_pad = std::max(0, context_start + context_length - 1);
C
chengduoZH 已提交
99
    int sequence_width = static_cast<int>(in->dims()[1]);
C
chengduoZH 已提交
100

Q
QI JUN 已提交
101 102
    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();
C
chengduoZH 已提交
103 104 105
    // use col_shape in the im2col calculation
    framework::DDim col_shape = {in->dims()[0],
                                 sequence_width * context_length};
C
chengduoZH 已提交
106
    Tensor col;
C
chengduoZH 已提交
107 108 109 110

    if (in_g || filter_g || (padding_trainable && padding_data_g)) {
      col.mutable_data<T>(col_shape, context.GetPlace());
      // Because if padding_trainable is false, padding data should be zeros.
Q
QI JUN 已提交
111 112 113
      set_zero(dev_ctx, &col, static_cast<T>(0));
      math::matmul<DeviceContext, T>(dev_ctx, *out_g, false, *filter, true,
                                     T(1.0), &col, T(1.0));
C
chengduoZH 已提交
114
    }
Q
QI JUN 已提交
115 116
    math::ContextProjectFunctor<DeviceContext, T> seq_project_functor;
    math::ContextProjectGradFunctor<DeviceContext, T> seq_project_grad_functor;
C
chengduoZH 已提交
117

C
chengduoZH 已提交
118 119
    if (in_g) {
      in_g->mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
120
      in_g->set_lod(in->lod());
Q
QI JUN 已提交
121
      set_zero(dev_ctx, in_g, static_cast<T>(0));
122

Q
QI JUN 已提交
123 124 125
      seq_project_grad_functor(dev_ctx, *in_g, padding_trainable, context_start,
                               context_length, context_stride, up_pad, down_pad,
                               false, true, padding_data_g, &col);
C
chengduoZH 已提交
126 127 128 129
    }

    if (padding_trainable && padding_data_g) {
      padding_data_g->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
130
      set_zero(dev_ctx, padding_data_g, static_cast<T>(0));
C
chengduoZH 已提交
131

C
chengduoZH 已提交
132
      LoDTensor* input = const_cast<LoDTensor*>(in);
Q
QI JUN 已提交
133 134 135
      seq_project_grad_functor(
          dev_ctx, *input, padding_trainable, context_start, context_length,
          context_stride, up_pad, down_pad, true, false, padding_data_g, &col);
C
chengduoZH 已提交
136
    }
C
chengduoZH 已提交
137 138 139

    if (filter_g) {
      filter_g->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
140
      set_zero(dev_ctx, filter_g, static_cast<T>(0));
C
chengduoZH 已提交
141

C
chengduoZH 已提交
142 143
      Tensor filter_grad = *filter_g;
      LoDTensor out_grad = *out_g;
C
chengduoZH 已提交
144

C
chengduoZH 已提交
145
      const Tensor* padding_data = nullptr;
C
chengduoZH 已提交
146
      if (padding_trainable) {
C
chengduoZH 已提交
147
        padding_data = context.Input<Tensor>("PaddingData");
C
chengduoZH 已提交
148 149
      }

Q
QI JUN 已提交
150 151 152
      seq_project_functor(dev_ctx, *in, *padding_data, padding_trainable,
                          context_start, context_length, context_stride, up_pad,
                          down_pad, &col);
C
chengduoZH 已提交
153

Q
QI JUN 已提交
154 155
      math::matmul<DeviceContext, T>(dev_ctx, col, true, out_grad, false,
                                     T(1.0), &filter_grad, T(1.0));
C
chengduoZH 已提交
156
    }
C
chengduoZH 已提交
157 158 159 160 161
  }
};

}  // namespace operators
}  // namespace paddle