sequence_conv_op.h 6.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/context_project.h"
#include "paddle/fluid/operators/math/math_function.h"
C
chengduoZH 已提交
19 20 21 22 23 24 25

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

Q
QI JUN 已提交
26
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
27
class SequenceConvKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
28 29 30 31
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
C
chengduoZH 已提交
32
    auto filter = *context.Input<Tensor>("Filter");
33

C
chengduoZH 已提交
34
    out->mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
35
    context.ShareLoD("X", "Out");
C
chengduoZH 已提交
36

C
chengduoZH 已提交
37 38 39 40
    int context_start = context.Attr<int>("contextStart");
    int context_length = context.Attr<int>("contextLength");
    int context_stride = context.Attr<int>("contextStride");
    bool padding_trainable = context.Attr<bool>("paddingTrainable");
C
chengduoZH 已提交
41 42 43 44

    PADDLE_ENFORCE_EQ(in->lod().size(), 1UL,
                      "Only support one level sequence now.");

C
chengduoZH 已提交
45
    const Tensor* padding_data = nullptr;
C
chengduoZH 已提交
46
    if (padding_trainable) {
C
chengduoZH 已提交
47
      padding_data = context.Input<Tensor>("PaddingData");
C
chengduoZH 已提交
48 49 50 51
    }

    int up_pad = std::max(0, -context_start);
    int down_pad = std::max(0, context_start + context_length - 1);
C
chengduoZH 已提交
52
    int sequence_width = static_cast<int>(in->dims()[1]);
C
chengduoZH 已提交
53

C
chengduoZH 已提交
54
    framework::DDim col_shape = {in->dims()[0],
C
chengduoZH 已提交
55
                                 context_length * sequence_width};
C
chengduoZH 已提交
56
    Tensor col;
C
chengduoZH 已提交
57 58
    col.mutable_data<T>(col_shape, context.GetPlace());
    // Because if padding_trainable is false, padding data should be zeros.
Q
QI JUN 已提交
59 60 61
    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();
    set_zero(dev_ctx, &col, static_cast<T>(0));
62

Q
QI JUN 已提交
63
    math::ContextProjectFunctor<DeviceContext, T> seq_project_functor;
64

Q
QI JUN 已提交
65 66 67
    seq_project_functor(dev_ctx, *in, *padding_data, padding_trainable,
                        context_start, context_length, context_stride, up_pad,
                        down_pad, &col);
68

Q
QI JUN 已提交
69 70 71
    math::matmul<DeviceContext, T>(dev_ctx, col, false, filter, false,
                                   static_cast<T>(1.0), out,
                                   static_cast<T>(0.0));
C
chengduoZH 已提交
72 73 74
  }
};

Q
QI JUN 已提交
75
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
76
class SequenceConvGradKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
77 78 79
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
C
chengduoZH 已提交
80
    auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
C
chengduoZH 已提交
81
    auto* filter_g = context.Output<Tensor>(framework::GradVarName("Filter"));
C
chengduoZH 已提交
82
    auto* padding_data_g =
C
chengduoZH 已提交
83
        context.Output<Tensor>(framework::GradVarName("PaddingData"));
84
    auto* in = context.Input<LoDTensor>("X");
C
chengduoZH 已提交
85
    auto* filter = context.Input<Tensor>("Filter");
C
chengduoZH 已提交
86

C
chengduoZH 已提交
87 88 89 90
    int context_start = context.Attr<int>("contextStart");
    int context_length = context.Attr<int>("contextLength");
    int context_stride = context.Attr<int>("contextStride");
    bool padding_trainable = context.Attr<bool>("paddingTrainable");
C
chengduoZH 已提交
91

92
    PADDLE_ENFORCE_EQ(in->lod().size(), 1UL,
C
chengduoZH 已提交
93
                      "Only support one level sequence now.");
94
    auto lod_g_level_0 = in->lod()[0];
C
chengduoZH 已提交
95

C
chengduoZH 已提交
96 97
    int up_pad = std::max(0, -context_start);
    int down_pad = std::max(0, context_start + context_length - 1);
C
chengduoZH 已提交
98
    int sequence_width = static_cast<int>(in->dims()[1]);
C
chengduoZH 已提交
99

Q
QI JUN 已提交
100 101
    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();
C
chengduoZH 已提交
102 103 104
    // use col_shape in the im2col calculation
    framework::DDim col_shape = {in->dims()[0],
                                 sequence_width * context_length};
C
chengduoZH 已提交
105
    Tensor col;
C
chengduoZH 已提交
106 107 108 109

    if (in_g || filter_g || (padding_trainable && padding_data_g)) {
      col.mutable_data<T>(col_shape, context.GetPlace());
      // Because if padding_trainable is false, padding data should be zeros.
Q
QI JUN 已提交
110 111 112
      set_zero(dev_ctx, &col, static_cast<T>(0));
      math::matmul<DeviceContext, T>(dev_ctx, *out_g, false, *filter, true,
                                     T(1.0), &col, T(1.0));
C
chengduoZH 已提交
113
    }
Q
QI JUN 已提交
114 115
    math::ContextProjectFunctor<DeviceContext, T> seq_project_functor;
    math::ContextProjectGradFunctor<DeviceContext, T> seq_project_grad_functor;
C
chengduoZH 已提交
116

C
chengduoZH 已提交
117 118
    if (in_g) {
      in_g->mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
119
      in_g->set_lod(in->lod());
Q
QI JUN 已提交
120
      set_zero(dev_ctx, in_g, static_cast<T>(0));
121

Q
QI JUN 已提交
122 123 124
      seq_project_grad_functor(dev_ctx, *in_g, padding_trainable, context_start,
                               context_length, context_stride, up_pad, down_pad,
                               false, true, padding_data_g, &col);
C
chengduoZH 已提交
125 126 127 128
    }

    if (padding_trainable && padding_data_g) {
      padding_data_g->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
129
      set_zero(dev_ctx, padding_data_g, static_cast<T>(0));
C
chengduoZH 已提交
130

C
chengduoZH 已提交
131
      LoDTensor* input = const_cast<LoDTensor*>(in);
Q
QI JUN 已提交
132 133 134
      seq_project_grad_functor(
          dev_ctx, *input, padding_trainable, context_start, context_length,
          context_stride, up_pad, down_pad, true, false, padding_data_g, &col);
C
chengduoZH 已提交
135
    }
C
chengduoZH 已提交
136 137 138

    if (filter_g) {
      filter_g->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
139
      set_zero(dev_ctx, filter_g, static_cast<T>(0));
C
chengduoZH 已提交
140

C
chengduoZH 已提交
141 142
      Tensor filter_grad = *filter_g;
      LoDTensor out_grad = *out_g;
C
chengduoZH 已提交
143

C
chengduoZH 已提交
144
      const Tensor* padding_data = nullptr;
C
chengduoZH 已提交
145
      if (padding_trainable) {
C
chengduoZH 已提交
146
        padding_data = context.Input<Tensor>("PaddingData");
C
chengduoZH 已提交
147 148
      }

Q
QI JUN 已提交
149 150 151
      seq_project_functor(dev_ctx, *in, *padding_data, padding_trainable,
                          context_start, context_length, context_stride, up_pad,
                          down_pad, &col);
C
chengduoZH 已提交
152

Q
QI JUN 已提交
153 154
      math::matmul<DeviceContext, T>(dev_ctx, col, true, out_grad, false,
                                     T(1.0), &filter_grad, T(1.0));
C
chengduoZH 已提交
155
    }
C
chengduoZH 已提交
156 157 158 159 160
  }
};

}  // namespace operators
}  // namespace paddle