softmax_with_cross_entropy_op.cc 8.2 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

C
caoying03 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
8

C
caoying03 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#include "paddle/operators/softmax_with_cross_entropy_op.h"
Y
Yu Yang 已提交
16
#include <paddle/function/TensorType.h>
Y
Yu Yang 已提交
17

18 19 20 21 22 23
namespace paddle {
namespace operators {

class SoftmaxWithCrossEntropyOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
24 25
  SoftmaxWithCrossEntropyOpMaker(framework::OpProto* proto,
                                 framework::OpAttrChecker* op_checker)
26
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
caoying03 已提交
27
    AddInput("Logits",
28
             "(Tensor, default: Tensor<float>), The unscaled log probabilities "
C
caoying03 已提交
29
             "which is a 2-D tensor with shape [N x K]. N is the batch_size, "
30 31
             "and K is the class number.");
    AddInput("Label",
C
caoying03 已提交
32 33 34 35
             "(Tensor) The ground truth which is a 2-D tensor. If soft_label "
             "is set to false, Label is a Tensor<int64> with shape [N x 1]. If "
             "soft_label is set to true, Label is a Tensor<float/double> with "
             "shape [N x K].");
C
caoying03 已提交
36 37
    AddOutput(
        "Softmax",
38
        "(Tensor, default: Tensor<float>), A 2-D tensor with shape [N x K]. "
C
caoying03 已提交
39 40
        "The outputs value of softmax activation by given the input batch, "
        "which will be used in backward calculation.")
C
caoying03 已提交
41
        .AsIntermediate();
C
caoying03 已提交
42
    AddOutput("Loss",
43
              "(Tensor, default: Tensor<float>), A 2-D tensor. The cross "
C
caoying03 已提交
44
              "entropy loss with shape [N x 1].");
C
caoying03 已提交
45
    AddAttr<bool>(
46
        "soft_label",
C
caoying03 已提交
47 48 49
        "(bool, default: false), A flag to indicate whether to interpretate "
        "the given labels as soft labels.")
        .SetDefault(false);
50
    AddComment(R"DOC(
51 52 53
Softmax With Cross Entropy Operator.

Cross entropy loss with softmax is used as the output layer extensively. This
54
operator computes the softmax normalized values for each row of the input
55
tensor, after which cross-entropy loss is computed. This provides a more
56 57
numerically stable gradient.

58 59 60
Because this operator performs a softmax on logits internally, it expects
unscaled logits. This operator should not be used with the output of
softmax operator since that would produce incorrect results.
61

C
caoying03 已提交
62
When the attribute soft_label is set false, this operators expects mutually
63 64
exclusive hard labels, each sample in a batch is in exactly one class with a
probability of 1.0. Each sample in the batch will have a single label.
65

66
The equation is as follows:
67

68
1) Hard label (one-hot label, so every sample has exactly one class)
69

70
$$Loss_j = \f$ -\text{Logit}_{Label_j} +
71
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right),
72
j = 1, ..., K $\f$$
C
caoying03 已提交
73

74
2) Soft label (each sample can have a distribution over all classes)
C
caoying03 已提交
75

76
$$Loss_j = \f$ -\sum_{i=0}^{K}\text{Label}_i\left(\text{Logit}_i -
77
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right),
78
j = 1,...,K $\f$$
C
caoying03 已提交
79 80

)DOC");
81 82 83 84 85 86 87
  }
};

class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

88
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
89 90 91 92 93 94 95 96 97 98
    PADDLE_ENFORCE(ctx->HasInput("Logits"),
                   "Input(Logits) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("Softmax"),
                   "Output(Softmax) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Loss"), "Output(Loss) should be not null.");

    auto logits_dims = ctx->GetInputDim("Logits");
    auto labels_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
99
    PADDLE_ENFORCE_EQ(
Q
qiaolongfei 已提交
100
        logits_dims.size(), 2UL,
101
        "The input of softmax_with_cross_entropy should be a 2-D tensor.");
Q
qiaolongfei 已提交
102
    PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
C
caoying03 已提交
103
                      "The labels should be a 2-D tensor.");
104

105
    if (ctx->Attrs().Get<bool>("soft_label")) {
Q
qiaolongfei 已提交
106
      PADDLE_ENFORCE_EQ(logits_dims[1], labels_dims[1],
107
                        "If Attr(soft_label) == true, the 2nd dimension of "
108 109
                        "Input(X) and Input(Label) should be equal.");
    } else {
Q
qiaolongfei 已提交
110
      PADDLE_ENFORCE_EQ(labels_dims[1], 1UL,
111
                        "If Attr(soft_label) == false, the 2nd dimension of "
112 113 114
                        "Input(Label) should be 1.");
    }

Q
qiaolongfei 已提交
115 116
    ctx->SetOutputDim("Softmax", logits_dims);
    ctx->SetOutputDim("Loss", {logits_dims[0], 1});
117

Q
qiaolongfei 已提交
118 119
    ctx->ShareLoD("Logits", /*->*/ "Softmax");
    ctx->ShareLoD("Logits", /*->*/ "Loss");
C
caoying03 已提交
120
  }
Y
Yu Yang 已提交
121

122
 protected:
Y
Yu Yang 已提交
123
  framework::OpKernelType GetKernelType(
Y
Yu Yang 已提交
124
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
125 126 127
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("Logits")->type()),
        ctx.device_context());
Y
Yu Yang 已提交
128
  }
C
caoying03 已提交
129 130 131 132 133 134
};

class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

135
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
136 137 138 139 140 141 142 143 144 145 146
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@Grad) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Softmax"),
                   "Input(Softmax) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")),
                   "Output(Logits@Grad) should be not null.");

    auto softmax_dims = ctx->GetInputDim("Softmax");
    auto labels_dims = ctx->GetInputDim("Label");
    PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
C
caoying03 已提交
147
                      "The labels should be a 2-D tensor.");
148

149
    if (ctx->Attrs().Get<bool>("soft_label")) {
Q
qiaolongfei 已提交
150
      PADDLE_ENFORCE_EQ(softmax_dims[1], labels_dims[1],
151
                        "When Attr(soft_label) == true, the 2nd dimension of "
152 153
                        "Input(X) and Input(Label) should be equal.");
    } else {
Q
qiaolongfei 已提交
154
      PADDLE_ENFORCE_EQ(labels_dims[1], 1UL,
155
                        "When Attr(soft_label) == false, the 2nd dimension of "
156 157
                        "Input(Label) should be 1.");
    }
C
caoying03 已提交
158

Q
qiaolongfei 已提交
159 160
    ctx->SetOutputDim(framework::GradVarName("Logits"),
                      ctx->GetInputDim("Softmax"));
161
  }
Y
Yu Yang 已提交
162

163
 protected:
Y
Yu Yang 已提交
164
  framework::OpKernelType GetKernelType(
Y
Yu Yang 已提交
165
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
166 167 168 169
    return framework::OpKernelType(
        framework::ToDataType(
            ctx.Input<Tensor>(framework::GradVarName("Loss"))->type()),
        ctx.device_context());
Y
Yu Yang 已提交
170
  }
171 172
};

173 174 175 176 177
class SoftmaxGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
178 179 180 181 182 183 184 185 186 187 188
  std::unique_ptr<framework::OpDescBind> Apply() const override {
    auto* grad_op = new framework::OpDescBind();
    grad_op->SetType("softmax_with_cross_entropy_grad");
    grad_op->SetInput("Label", Input("Label"));
    grad_op->SetInput("Softmax", Output("Softmax"));
    grad_op->SetInput("Loss", Output("Loss"));
    grad_op->SetInput(framework::GradVarName("Softmax"), OutputGrad("Softmax"));
    grad_op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));
    grad_op->SetOutput(framework::GradVarName("Logits"), InputGrad("Logits"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDescBind>(grad_op);
189 190 191
  }
};

192 193 194 195 196
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

197
REGISTER_OPERATOR(softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyOp,
Y
Yu Yang 已提交
198
                  ops::SoftmaxWithCrossEntropyOpMaker, ops::SoftmaxGradMaker);
199 200
REGISTER_OPERATOR(softmax_with_cross_entropy_grad,
                  ops::SoftmaxWithCrossEntropyOpGrad);
201
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy,
C
caoying03 已提交
202 203
                       ops::SoftmaxWithCrossEntropyKernel<float>,
                       ops::SoftmaxWithCrossEntropyKernel<double>);
204
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy_grad,
C
caoying03 已提交
205 206
                       ops::SoftmaxWithCrossEntropyGradKernel<float>,
                       ops::SoftmaxWithCrossEntropyGradKernel<double>);