softmax_with_cross_entropy_op.cc 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/softmax_with_cross_entropy_op.h"

namespace paddle {
namespace operators {

class SoftmaxWithCrossEntropyOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
23 24
  SoftmaxWithCrossEntropyOpMaker(framework::OpProto* proto,
                                 framework::OpAttrChecker* op_checker)
25
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
caoying03 已提交
26 27 28 29 30
    //(TODO caoying) replace int with boolean
    AddAttr<int>("soft_label",
                 "(int, default 0), A flag to indicate whether to interpretate "
                 "the given labels as soft labels.")
        .SetDefault(0);
C
caoying03 已提交
31
    AddInput("Logits",
C
caoying03 已提交
32 33 34
             "(Tensor, default Tensor<float>), The unscaled log probabilities "
             "which is a 2-D tensor with shape [N x K]. N is the batch_size, "
             "and K is the class number.")
35
        .NotInGradient();
C
caoying03 已提交
36 37 38 39 40 41 42 43 44 45 46 47
    AddInput(
        "Label",
        "(Tensor, default Tensor<int>), The ground truth which is "
        "a 1-D or 2-D tensor. "
        "If soft_label is set to 0, Label is a Tensor<int> with shape [N x 1]. "
        "If soft_label is set to 1, Label is a Tensor<float/double> "
        "with shape [N x K].");
    AddOutput(
        "Softmax",
        "(Tensor, default Tensor<float>), A 2-D tensor with shape [N x K]. "
        "The outputs value of softmax activation by given the input batch, "
        "which will be used in backward calculation.")
C
caoying03 已提交
48
        .AsIntermediate();
C
caoying03 已提交
49 50 51
    AddOutput("Loss",
              "(Tensor, default Tensor<float>), A 1-D tensor. The cross "
              "entropy loss with shape [N x 1].");
52 53 54 55 56 57 58 59 60 61 62 63 64 65
    AddComment(R"DOC(
Cross entropy loss with softmax are used as the output layer extensively. This
operator computes the softmax normalized values for each row of the input
tensor, after which cross-entropy loss is then computed. This provides a more
numerically stable gradient.

Because this operators performs a softmax on logits internally, it expects
unscaled logits. Please do not call this op with the output of softmax operator,
which will produce incorrect results.

This operators expects mutually exclusive hard labels, each sample in a batch
is in exactly one class with probabilities 1. Each sample in the batch with one
and only one label.

C
caoying03 已提交
66
Equation:
67

C
caoying03 已提交
68
1) hard label (one-hot label)
69

C
caoying03 已提交
70 71 72 73 74 75 76
Loss_j = -\text{Logit}_{Label_j} + \log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right), j = 1, ..., K

2) soft label (a distribution over all classes)

Loss_j = -\sum_{i=0}^{K}\text{Label}_i\left(\text{Logit}_i-\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right), j = 1,...,K

)DOC");
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  }
};

class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext& ctx) const override {
    const Tensor* logits = ctx.Input<Tensor>("Logits");
    PADDLE_ENFORCE(
        logits->dims().size() == 2UL,
        "The input of softmax_with_cross_entropy should be a 2-d tensor.");
    PADDLE_ENFORCE(ctx.Input<Tensor>("Label")->dims().size() == 1UL,
                   "The label should be a 1-d tensor.");

C
caoying03 已提交
93
    ctx.Output<framework::LoDTensor>("Softmax")->Resize(logits->dims());
C
caoying03 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    ctx.Output<framework::LoDTensor>("Loss")->Resize({logits->dims()[0], 1});
  }
};

class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext& ctx) const override {
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Loss")),
                            "Input(Loss@Grad) should not be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Softmax"),
                            "Input(Softmax) should be not null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
                            "Input(Lable) should be not null.");

    ctx.Output<framework::LoDTensor>(framework::GradVarName("Logits"))
        ->Resize(ctx.Input<Tensor>("Softmax")->dims());
113 114 115 116 117 118 119 120 121 122 123 124
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyOp,
            ops::SoftmaxWithCrossEntropyOpMaker,
            softmax_with_cross_entropy_grad,
            ops::SoftmaxWithCrossEntropyOpGrad);
125 126 127 128
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy,
                       ops::SoftmaxWithCrossEntropyKernel<float>);
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy_grad,
                       ops::SoftmaxWithCrossEntropyGradKernel<float>);