mul_op.h 7.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
Y
Yu Yang 已提交
16

Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/framework/operator.h"
Y
Yu Yang 已提交
19
#include "paddle/fluid/operators/math/blas.h"
20
#include "paddle/pten/kernels/funcs/math_function.h"
21 22 23 24

namespace paddle {
namespace operators {

D
dongzhihong 已提交
25 26
using Tensor = framework::Tensor;

P
Physher 已提交
27
constexpr int kMULMKLDNNINT8 = 1;
28
constexpr int kMULMKLDNNFP32 = 2;
P
Physher 已提交
29

Q
QI JUN 已提交
30
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
31
class MulKernel : public framework::OpKernel<T> {
32
 public:
D
dongzhihong 已提交
33
  void Compute(const framework::ExecutionContext& context) const override {
34 35
    const Tensor* x = context.Input<Tensor>("X");
    const Tensor* y = context.Input<Tensor>("Y");
F
fengjiayi 已提交
36
    Tensor* z = context.Output<Tensor>("Out");
37 38
    const Tensor x_matrix =
        x->dims().size() > 2
39
            ? framework::ReshapeToMatrix(
F
fengjiayi 已提交
40
                  *x, context.template Attr<int>("x_num_col_dims"))
41 42 43
            : *x;
    const Tensor y_matrix =
        y->dims().size() > 2
44
            ? framework::ReshapeToMatrix(
F
fengjiayi 已提交
45
                  *y, context.template Attr<int>("y_num_col_dims"))
46
            : *y;
47

F
fengjiayi 已提交
48
    z->mutable_data<T>(context.GetPlace());
Y
Yu Yang 已提交
49 50 51 52
    auto z_dim = z->dims();
    if (z_dim.size() != 2) {
      z->Resize({x_matrix.dims()[0], y_matrix.dims()[1]});
    }
Y
Yu Yang 已提交
53 54 55 56

    auto blas = math::GetBlas<DeviceContext, T>(context);

    blas.MatMul(x_matrix, y_matrix, z);
Y
Yu Yang 已提交
57 58 59
    if (z_dim.size() != 2) {
      z->Resize(z_dim);
    }
60 61
  }
};
D
dongzhihong 已提交
62

Q
QI JUN 已提交
63
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
64
class MulGradKernel : public framework::OpKernel<T> {
D
dongzhihong 已提交
65 66
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
F
fengjiayi 已提交
67 68
    int x_num_col_dims = ctx.template Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.template Attr<int>("y_num_col_dims");
69 70 71 72 73 74 75 76 77
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto x_matrix = x->dims().size() > 2
                        ? framework::ReshapeToMatrix(*x, x_num_col_dims)
                        : static_cast<const Tensor&>(*x);
    auto y_matrix = y->dims().size() > 2
                        ? framework::ReshapeToMatrix(*y, y_num_col_dims)
                        : static_cast<const Tensor&>(*y);
    auto* dout = ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
D
dongzhihong 已提交
78

Y
Yu Yang 已提交
79 80 81 82 83
    Tensor dout_mat;
    dout_mat.ShareDataWith(*dout);
    dout_mat.Resize({framework::flatten_to_2d(x->dims(), x_num_col_dims)[0],
                     framework::flatten_to_2d(y->dims(), y_num_col_dims)[1]});

84 85 86 87 88 89 90 91 92 93
    auto* dx = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<framework::LoDTensor>(framework::GradVarName("Y"));

    if (dx != nullptr) {
      dx->set_lod(x->lod());
    }
    if (dy != nullptr) {
      dy->set_lod(y->lod());
    }

Q
QI JUN 已提交
94
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
Y
Yu Yang 已提交
95
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
96 97
    if (dx) {
      dx->mutable_data<T>(ctx.GetPlace());
98 99 100
      Tensor dx_matrix = dx->dims().size() > 2
                             ? framework::ReshapeToMatrix(*dx, x_num_col_dims)
                             : *dx;
Y
Yu Yang 已提交
101

102
      // dx = dout * y'. dx: M x K, dout : M x N, y : K x N
Y
Yu Yang 已提交
103
      blas.MatMul(dout_mat, false, y_matrix, true, &dx_matrix);
104 105 106
    }
    if (dy) {
      dy->mutable_data<T>(ctx.GetPlace());
107 108 109
      Tensor dy_matrix = dy->dims().size() > 2
                             ? framework::ReshapeToMatrix(*dy, y_num_col_dims)
                             : *dy;
110
      // dy = x' * dout. dy K x N, dout : M x N, x : M x K
Y
Yu Yang 已提交
111
      blas.MatMul(x_matrix, true, dout_mat, false, &dy_matrix);
112
    }
D
dongzhihong 已提交
113 114 115
  }
};

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
template <typename DeviceContext, typename T>
class MulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    int x_num_col_dims = ctx.template Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.template Attr<int>("y_num_col_dims");
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto x_mat = x->dims().size() > 2
                     ? framework::ReshapeToMatrix(*x, x_num_col_dims)
                     : static_cast<const Tensor&>(*x);
    auto y_mat = y->dims().size() > 2
                     ? framework::ReshapeToMatrix(*y, y_num_col_dims)
                     : static_cast<const Tensor&>(*y);

    const int m = framework::flatten_to_2d(x->dims(), x_num_col_dims)[0];
    const int n = framework::flatten_to_2d(y->dims(), y_num_col_dims)[1];

    auto* dout = ctx.Input<framework::LoDTensor>("DOut");
    Tensor dout_mat;
    dout_mat.ShareDataWith(*dout);
    dout_mat.Resize({m, n});

    auto* ddx = ctx.Input<framework::LoDTensor>("DDX");
    auto* ddy = ctx.Input<framework::LoDTensor>("DDY");

    auto* dx = ctx.Output<framework::LoDTensor>("DX");
    auto* dy = ctx.Output<framework::LoDTensor>("DY");
    auto* ddout = ctx.Output<framework::LoDTensor>("DDOut");

    Tensor ddout_mat;
    if (ddout) {
      ddout->set_lod(dout->lod());
      // allocate and reshape ddout
      ddout->mutable_data<T>(ctx.GetPlace());
      ddout_mat.ShareDataWith(*ddout);
      ddout_mat.Resize({m, n});
    }

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    // a flag to specify whether ddout value has been set, if flag
    // is false, MatMul beta should be 0 to set ddout, if flag is
    // true, MatMul beta should be 1 to add result to ddout.
    bool ddout_flag = false;
    if (ddx) {
      auto ddx_mat = ddx->dims().size() > 2
                         ? framework::ReshapeToMatrix(*ddx, x_num_col_dims)
                         : static_cast<const Tensor&>(*ddx);

      // dy = ddx' * dout. dy : K x M, ddx' : K x M, dout : M x N
      if (dy) {
        dy->set_lod(y->lod());
        // allocate and reshape dy
        dy->mutable_data<T>(ctx.GetPlace());
        Tensor dy_mat = dy->dims().size() > 2
                            ? framework::ReshapeToMatrix(*dy, y_num_col_dims)
                            : *dy;
        blas.MatMul(ddx_mat, true, dout_mat, false, &dy_mat);
      }
      // ddout1 = ddx * y. ddx : M x K, y : K x N, ddout1 : M x N
      if (ddout) {
        blas.MatMul(ddx_mat, false, y_mat, false, static_cast<T>(1.0),
                    &ddout_mat, static_cast<T>(ddout_flag));
        ddout_flag = true;
      }
    }
    if (ddy) {
      auto ddy_mat = ddy->dims().size() > 2
                         ? framework::ReshapeToMatrix(*ddy, y_num_col_dims)
                         : static_cast<const Tensor&>(*ddy);
      // dx = dout * ddy'. dout : M x N, ddy' : N x K, dx : M x K
      if (dx) {
        dx->set_lod(x->lod());
        // allocate and reshape dx
        dx->mutable_data<T>(ctx.GetPlace());
        Tensor dx_mat = dx->dims().size() > 2
                            ? framework::ReshapeToMatrix(*dx, x_num_col_dims)
                            : *dx;
        blas.MatMul(dout_mat, false, ddy_mat, true, &dx_mat);
      }
      // ddout2 = x * ddy. x : M x K, ddy : K x N, ddout2 : M x N
      if (ddout) {
        blas.MatMul(x_mat, false, ddy_mat, false, static_cast<T>(1.0),
                    &ddout_mat, static_cast<T>(ddout_flag));
      }
    }
  }
};

206 207
}  // namespace operators
}  // namespace paddle