test_bce_loss.py 9.7 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
import numpy as np
import unittest
from op_test import OpTest


22 23 24 25 26 27 28 29
def test_static_layer(place,
                      input_np,
                      label_np,
                      reduction='mean',
                      weight_np=None):
    prog = paddle.static.Program()
    startup_prog = paddle.static.Program()
    with paddle.static.program_guard(prog, startup_prog):
30 31
        input = paddle.fluid.data(name='input', shape=input_np.shape, dtype='float64')
        label = paddle.fluid.data(name='label', shape=label_np.shape, dtype='float64')
32
        if weight_np is not None:
33
            weight = paddle.fluid.data(
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
                name='weight', shape=weight_np.shape, dtype='float64')
            bce_loss = paddle.nn.loss.BCELoss(
                weight=weight, reduction=reduction)
        else:
            bce_loss = paddle.nn.loss.BCELoss(reduction=reduction)
        res = bce_loss(input, label)
        exe = paddle.static.Executor(place)
        static_result = exe.run(prog,
                                feed={"input": input_np,
                                      "label": label_np}
                                if weight_np is None else {
                                    "input": input_np,
                                    "label": label_np,
                                    "weight": weight_np
                                },
                                fetch_list=[res])
    return static_result


def test_static_functional(place,
                           input_np,
                           label_np,
                           reduction='mean',
                           weight_np=None):
    prog = paddle.static.Program()
    startup_prog = paddle.static.Program()
    with paddle.static.program_guard(prog, startup_prog):
61 62
        input = paddle.fluid.data(name='input', shape=input_np.shape, dtype='float64')
        label = paddle.fluid.data(name='label', shape=label_np.shape, dtype='float64')
63
        if weight_np is not None:
64
            weight = paddle.fluid.data(
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
                name='weight', shape=weight_np.shape, dtype='float64')
            res = paddle.nn.functional.binary_cross_entropy(
                input, label, weight=weight, reduction=reduction)
        else:
            res = paddle.nn.functional.binary_cross_entropy(
                input, label, reduction=reduction)
        exe = paddle.static.Executor(place)
        static_result = exe.run(prog,
                                feed={"input": input_np,
                                      "label": label_np}
                                if weight_np is None else {
                                    "input": input_np,
                                    "label": label_np,
                                    "weight": weight_np
                                },
                                fetch_list=[res])
    return static_result


def test_dygraph_layer(place,
                       input_np,
                       label_np,
                       reduction='mean',
                       weight_np=None):
    paddle.disable_static()
    if weight_np is not None:
        weight = paddle.to_tensor(weight_np)
        bce_loss = paddle.nn.loss.BCELoss(weight=weight, reduction=reduction)
    else:
        bce_loss = paddle.nn.loss.BCELoss(reduction=reduction)
    dy_res = bce_loss(paddle.to_tensor(input_np), paddle.to_tensor(label_np))
    dy_result = dy_res.numpy()
    paddle.enable_static()
    return dy_result


def test_dygraph_functional(place,
                            input_np,
                            label_np,
                            reduction='mean',
                            weight_np=None):
    paddle.disable_static()
    input = paddle.to_tensor(input_np)
    label = paddle.to_tensor(label_np)

    if weight_np is not None:
        weight = paddle.to_tensor(weight_np)
        dy_res = paddle.nn.functional.binary_cross_entropy(
            input, label, weight=weight, reduction=reduction)
    else:
        dy_res = paddle.nn.functional.binary_cross_entropy(
            input, label, reduction=reduction)
    dy_result = dy_res.numpy()
    paddle.enable_static()
    return dy_result


def calc_bceloss(input_np, label_np, reduction='mean', weight_np=None):
    if weight_np is None:
        expected = -1 * (label_np * np.log(input_np) +
                         (1. - label_np) * np.log(1. - input_np))
    else:
        expected = -1 * weight_np * (label_np * np.log(input_np) +
                                     (1. - label_np) * np.log(1. - input_np))

    if reduction == 'mean':
        expected = np.mean(expected)
    elif reduction == 'sum':
        expected = np.sum(expected)
    else:
        expected = expected

    return expected


C
ceci3 已提交
140 141
class TestBCELoss(unittest.TestCase):
    def test_BCELoss(self):
142 143
        input_np = np.random.uniform(0.1, 0.8, size=(20, 30)).astype(np.float64)
        label_np = np.random.randint(0, 2, size=(20, 30)).astype(np.float64)
C
ceci3 已提交
144 145 146 147 148
        places = [fluid.CPUPlace()]
        if fluid.core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        reductions = ['sum', 'mean', 'none']
        for place in places:
149 150 151 152 153 154
            for reduction in reductions:
                static_result = test_static_layer(place, input_np, label_np,
                                                  reduction)
                dy_result = test_dygraph_layer(place, input_np, label_np,
                                               reduction)
                expected = calc_bceloss(input_np, label_np, reduction)
C
ceci3 已提交
155 156 157
                self.assertTrue(np.allclose(static_result, expected))
                self.assertTrue(np.allclose(static_result, dy_result))
                self.assertTrue(np.allclose(dy_result, expected))
158 159 160 161 162 163 164
                static_functional = test_static_functional(place, input_np,
                                                           label_np, reduction)
                dy_functional = test_dygraph_functional(place, input_np,
                                                        label_np, reduction)
                self.assertTrue(np.allclose(static_functional, expected))
                self.assertTrue(np.allclose(static_functional, dy_functional))
                self.assertTrue(np.allclose(dy_functional, expected))
C
ceci3 已提交
165 166

    def test_BCELoss_weight(self):
167 168 169 170
        input_np = np.random.uniform(
            0.1, 0.8, size=(2, 3, 4, 10)).astype(np.float64)
        label_np = np.random.randint(
            0, 2, size=(2, 3, 4, 10)).astype(np.float64)
C
ceci3 已提交
171
        weight_np = np.random.random(size=(3, 4, 10)).astype(np.float64)
C
ceci3 已提交
172 173
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        for reduction in ['sum', 'mean', 'none']:
            static_result = test_static_layer(
                place, input_np, label_np, reduction, weight_np=weight_np)
            dy_result = test_dygraph_layer(
                place, input_np, label_np, reduction, weight_np=weight_np)
            expected = calc_bceloss(
                input_np, label_np, reduction, weight_np=weight_np)
            self.assertTrue(np.allclose(static_result, expected))
            self.assertTrue(np.allclose(static_result, dy_result))
            self.assertTrue(np.allclose(dy_result, expected))
            static_functional = test_static_functional(
                place, input_np, label_np, reduction, weight_np=weight_np)
            dy_functional = test_dygraph_functional(
                place, input_np, label_np, reduction, weight_np=weight_np)
            self.assertTrue(np.allclose(static_functional, expected))
            self.assertTrue(np.allclose(static_functional, dy_functional))
            self.assertTrue(np.allclose(dy_functional, expected))

    def test_BCELoss_error(self):
        paddle.disable_static()
        self.assertRaises(
            ValueError, paddle.nn.loss.BCELoss, reduction="unsupport reduction")
        input = paddle.to_tensor([[0.1, 0.3]], dtype='float32')
        label = paddle.to_tensor([[0.0, 1.0]], dtype='float32')
        self.assertRaises(
            ValueError,
            paddle.nn.functional.binary_cross_entropy,
            input=input,
            label=label,
            reduction="unsupport reduction")
        paddle.enable_static()

C
ceci3 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

def bce_loss(input, label):
    return -1 * (label * np.log(input) + (1. - label) * np.log(1. - input))


class TestBceLossOp(OpTest):
    def setUp(self):
        self.init_test_case()
        self.op_type = "bce_loss"
        input_np = np.random.uniform(0.1, 0.8, self.shape).astype("float64")
        label_np = np.random.randint(0, 2, self.shape).astype("float64")
        output_np = bce_loss(input_np, label_np)

        self.inputs = {'X': input_np, 'Label': label_np}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')

    def init_test_case(self):
        self.shape = [10, 10]


C
ceci3 已提交
232 233 234 235 236 237 238 239 240 241
class TestBceLossOpCase1(OpTest):
    def init_test_cast(self):
        self.shape = [2, 3, 4, 5]


class TestBceLossOpCase2(OpTest):
    def init_test_cast(self):
        self.shape = [2, 3, 20]


C
ceci3 已提交
242 243
if __name__ == "__main__":
    unittest.main()