test_bce_loss.py 5.5 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
import numpy as np
import unittest
from op_test import OpTest


class TestBCELoss(unittest.TestCase):
    def test_BCELoss(self):
        input_np = np.random.random(size=(20, 30)).astype(np.float64)
        label_np = np.random.random(size=(20, 30)).astype(np.float64)
        prog = fluid.Program()
        startup_prog = fluid.Program()
        places = [fluid.CPUPlace()]
        if fluid.core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        reductions = ['sum', 'mean', 'none']
        for place in places:
            for red in reductions:
                with fluid.program_guard(prog, startup_prog):
                    input = fluid.data(
                        name='input', shape=[None, 30], dtype='float64')
                    label = fluid.data(
                        name='label', shape=[None, 30], dtype='float64')
                    bce_loss = paddle.nn.loss.BCELoss(reduction=red)
                    res = bce_loss(input, label)

                    exe = fluid.Executor(place)
                    static_result = exe.run(
                        prog,
                        feed={"input": input_np,
                              "label": label_np},
                        fetch_list=[res])

                with fluid.dygraph.guard():
                    bce_loss = paddle.nn.loss.BCELoss(reduction=red)
                    dy_res = bce_loss(
                        fluid.dygraph.to_variable(input_np),
                        fluid.dygraph.to_variable(label_np))
                    dy_result = dy_res.numpy()

                expected = -1 * (label_np * np.log(input_np) +
                                 (1. - label_np) * np.log(1. - input_np))
                if red == 'mean':
                    expected = np.mean(expected)
                elif red == 'sum':
                    expected = np.sum(expected)
                else:
                    expected = expected
                self.assertTrue(np.allclose(static_result, expected))
                self.assertTrue(np.allclose(static_result, dy_result))
                self.assertTrue(np.allclose(dy_result, expected))

    def test_BCELoss_weight(self):
        input_np = np.random.random(size=(20, 30)).astype(np.float64)
        label_np = np.random.random(size=(20, 30)).astype(np.float64)
        weight_np = np.random.random(size=(20, 30)).astype(np.float64)
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(name='input', shape=[None, 30], dtype='float64')
            label = fluid.data(name='label', shape=[None, 30], dtype='float64')
            weight = fluid.data(
                name='weight', shape=[None, 30], dtype='float64')
            bce_loss = paddle.nn.loss.BCELoss(weight=weight)
            res = bce_loss(input, label)

            exe = fluid.Executor(place)
            static_result = exe.run(prog,
                                    feed={
                                        "input": input_np,
                                        "label": label_np,
                                        "weight": weight_np
                                    },
                                    fetch_list=[res])

        with fluid.dygraph.guard():
            bce_loss = paddle.nn.loss.BCELoss(
                weight=fluid.dygraph.to_variable(weight_np))
            dy_res = bce_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_result = dy_res.numpy()

        expected = np.mean(-1 * weight_np *
                           (label_np * np.log(input_np) +
                            (1. - label_np) * np.log(1. - input_np)))
        self.assertTrue(np.allclose(static_result, expected))
        self.assertTrue(np.allclose(static_result, dy_result))
        self.assertTrue(np.allclose(dy_result, expected))


def bce_loss(input, label):
    return -1 * (label * np.log(input) + (1. - label) * np.log(1. - input))


class TestBceLossOp(OpTest):
    def setUp(self):
        self.init_test_case()
        self.op_type = "bce_loss"
        input_np = np.random.uniform(0.1, 0.8, self.shape).astype("float64")
        label_np = np.random.randint(0, 2, self.shape).astype("float64")
        output_np = bce_loss(input_np, label_np)

        self.inputs = {'X': input_np, 'Label': label_np}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')

    def init_test_case(self):
        self.shape = [10, 10]


C
ceci3 已提交
134 135 136 137 138 139 140 141 142 143
class TestBceLossOpCase1(OpTest):
    def init_test_cast(self):
        self.shape = [2, 3, 4, 5]


class TestBceLossOpCase2(OpTest):
    def init_test_cast(self):
        self.shape = [2, 3, 20]


C
ceci3 已提交
144 145
if __name__ == "__main__":
    unittest.main()