control_flow.py 66.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dzhwinter 已提交
14
import contextlib
D
dzhwinter 已提交
15

Y
yuyang18 已提交
16
from layer_function_generator import autodoc, templatedoc
Y
Yu Yang 已提交
17
from tensor import assign, fill_constant
18
from .. import core
19
from ..framework import Program, Variable, Operator
20
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
21
from ..initializer import force_init_on_cpu
22
from ops import logical_and, logical_not, logical_or
Y
yuyang18 已提交
23
import numpy
D
dzhwinter 已提交
24

Q
QI JUN 已提交
25
__all__ = [
Y
ying 已提交
26 27 28 29 30 31
    'split_lod_tensor',
    'merge_lod_tensor',
    'BlockGuard',
    'BlockGuardWithCompletion',
    'WhileGuard',
    'While',
32
    'Switch',
Y
ying 已提交
33 34 35 36 37 38 39 40
    'lod_rank_table',
    'max_sequence_len',
    'lod_tensor_to_array',
    'array_to_lod_tensor',
    'increment',
    'array_write',
    'create_array',
    'less_than',
41
    'equal',
Y
ying 已提交
42 43 44 45 46 47 48 49 50 51
    'array_read',
    'shrink_memory',
    'array_length',
    'IfElse',
    'DynamicRNN',
    'ConditionalBlock',
    'StaticRNN',
    'reorder_lod_tensor_by_rank',
    'ParallelDo',
    'Print',
52
    'is_empty',
D
dzhwinter 已提交
53 54
]

Y
Yu Yang 已提交
55

56
def split_lod_tensor(input, mask, level=0):
57 58 59 60
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
61 62
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
63 64 65 66 67

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
68
        level(int): The specific lod level to split.
69 70

    Returns:
Q
qiaolongfei 已提交
71 72 73 74
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
75 76 77 78

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
79
          x = fluid.layers.data(name='x', shape=[1])
80 81
          x.persistable = True

Q
qiaolongfei 已提交
82
          y = fluid.layers.data(name='y', shape=[1])
83 84
          y.persistable = True

Q
qiaolongfei 已提交
85
          out_true, out_false = fluid.layers.split_lod_tensor(
86
                input=x, mask=y, level=level)
87

88
    """
89
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
90 91
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
92 93 94 95 96 97 98 99 100 101 102 103
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


104
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
105 106 107 108 109
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
110 111 112
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
113 114 115 116 117 118 119

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
120
        level(int): The specific lod level to merge.
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
140
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
141
    out = helper.create_tmp_variable(dtype=in_true.dtype)
142 143 144 145 146 147 148 149 150 151 152
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
153 154 155 156 157 158 159
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
160 161
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
162 163 164 165 166 167 168 169 170 171
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
172 173 174 175 176 177 178 179 180
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
181
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
182 183
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
184 185

    Returns:
Y
yangyaming 已提交
186
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
187

Y
Yan Chunwei 已提交
188

Y
Yan Chunwei 已提交
189
    Examples:
Y
Yan Chunwei 已提交
190

Y
Yan Chunwei 已提交
191 192
        .. code-block:: python

Y
Yan Chunwei 已提交
193 194 195
           value = some_layer(...)
           Print(value, summarize=10,
               message="The content of some_layer: ")
Y
Yan Chunwei 已提交
196 197
    '''
    helper = LayerHelper('print', **locals())
Y
yangyaming 已提交
198
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yan Chunwei 已提交
199 200
    helper.append_op(
        type='print',
Y
yangyaming 已提交
201
        inputs={'In': input},
Y
Yan Chunwei 已提交
202 203 204 205 206 207 208 209
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
210 211 212
            'print_phase': print_phase.upper()
        },
        outputs={'Out': out})
Y
Yan Chunwei 已提交
213 214 215
    return out


Y
Yu Yang 已提交
216 217
class BlockGuard(object):
    """
218 219 220 221
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
222 223
    """

224 225
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
226
            raise TypeError("BlockGuard takes a program")
227
        self.main_program = main_program
Y
Yu Yang 已提交
228 229

    def __enter__(self):
230
        self.main_program.create_block()
Y
Yu Yang 已提交
231 232

    def __exit__(self, exc_type, exc_val, exc_tb):
233
        self.main_program.rollback()
Y
Yu Yang 已提交
234 235 236 237 238
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
239
class ParallelDo(object):
240
    """
L
Luo Tao 已提交
241 242
    ParallelDo is used to represent multi-thread data parallel processing.

L
Luo Tao 已提交
243
    Its vanilla implementation can be shown as the following (:math:`|` means
L
Luo Tao 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    single thread and :math:`||||` means multiple threads)

    .. code-block:: text

      In the forward pass
        |      Split input onto different devices
        |      Copy parameter onto different devices
        ||||   Compute forward pass in parallel
        |      Merge output from different devices

      In the backward pass
        |      Split output@grad onto different devices
        ||||   Compute backward pass in parallel
        |      accumulate param@grad from different devices to the first device
        |      Merge input@grad from different devices
L
Luo Tao 已提交
259
        |      Copy param@grad to the place of parallel_do_op
L
Luo Tao 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

    Examples:

    .. code-block:: python

      images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
      label = fluid.layers.data(name='label', shape=[1], dtype='int64')

      # ParallelDo version & Single-thread version
      if thread_num > 1:
          places = fluid.layers.get_places(thread_num)
          pd = fluid.layers.ParallelDo(places)
          with pd.do():
              images = pd.read_input(images)
              label = pd.read_input(label)
              predict = cnn_model(images)
              cost = fluid.layers.cross_entropy(input=predict, label=label)

              avg_cost = fluid.layers.mean(x=cost)
              pd.write_output(avg_cost)

          avg_cost = pd()
          avg_cost = fluid.layers.mean(avg_cost)
      else:
          predict = cnn_model(images)
          cost = fluid.layers.cross_entropy(input=predict, label=label)
          avg_cost = fluid.layers.mean(x=cost)

    .. warning::
    
       It will be soon deprecated, please use ParallelExecutor instead.
Y
Yang Yang 已提交
291 292
    """

Y
Yang Yang 已提交
293
    def __init__(self, places, use_nccl=False, name=None):
Y
Yang Yang 已提交
294 295 296 297 298
        self.helper = LayerHelper("parallel_do", name=name)
        self.inputs = []
        self.places = places
        self.outputs = []
        self.status = StaticRNN.BEFORE_RNN_BLOCK
Y
Yang Yang 已提交
299
        self.use_nccl = use_nccl
Y
Yang Yang 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

    def do(self):
        return BlockGuardWithCompletion(self)

    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def read_input(self, var):
        self.inputs.append(var)
Y
Yang Yang 已提交
323
        return var
Y
Yang Yang 已提交
324 325 326 327 328 329 330 331 332 333

    def write_output(self, var):
        self.outputs.append(var)

    def get_parameters(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        local_inputs = set()
Y
Yang Yang(Tony) 已提交
334
        params = list()
Y
Yang Yang 已提交
335 336 337 338 339 340 341 342
        for var in self.inputs:
            local_inputs.add(var.name)

        for op in current_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)
Y
Yang Yang(Tony) 已提交
343 344 345 346 347

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

Y
Yang Yang 已提交
348
        params = list(set(params))
Y
Yang Yang 已提交
349 350 351 352 353 354 355 356 357 358 359

        return [parent_block.var(name) for name in params]

    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

Y
Yang Yang 已提交
360 361 362 363 364 365 366 367 368 369
        self.outputs = [
            parent_block.create_var(
                name=o.name,
                shape=o.shape,
                dtype=o.dtype,
                lod_level=o.lod_level,
                persistable=o.persistable,
                stop_gradient=o.stop_gradient) for o in self.outputs
        ]

Y
Yang Yang 已提交
370
        inputs = [parent_block.var(i.name) for i in self.inputs]
Y
Yang Yang 已提交
371
        outputs = [parent_block.var(o.name) for o in self.outputs]
Y
Yang Yang 已提交
372 373 374 375 376 377 378 379

        parent_block.append_op(
            type='parallel_do',
            inputs={
                'inputs': inputs,
                'parameters': self.get_parameters(),
                'places': self.places
            },
Y
Yang Yang 已提交
380
            outputs={'outputs': outputs,
Y
Yang Yang 已提交
381
                     'parallel_scopes': [step_scope]},
Y
Yang Yang 已提交
382 383
            attrs={'sub_block': current_block,
                   'use_nccl': self.use_nccl})
Y
Yang Yang 已提交
384 385 386 387 388 389 390


class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
391 392
    """

Y
Yu Yang 已提交
393
    def __init__(self, rnn):
Y
Yang Yang 已提交
394 395 396 397
        if not (isinstance(rnn, StaticRNN) or isinstance(rnn, ParallelDo)):
            raise TypeError(
                "BlockGuardWithCompletion takes a StaticRNN or ParallelDo")
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
398 399 400 401
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
402
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
403 404

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
405 406
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
407
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
Y
Yang Yang 已提交
408 409 410
        self.rnn.complete_op()
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
411 412 413 414


class StaticRNNMemoryLink(object):
    """
415 416 417 418
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
419 420 421 422 423 424 425 426 427


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
428 429 430 431 432 433 434 435 436
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
437 438 439 440 441 442
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
443 444 445 446
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

447 448
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
449 450 451 452 453 454 455 456
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
Y
Yang Yang 已提交
457
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
458 459 460 461 462

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

463 464 465 466 467 468 469
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
470 471 472 473 474 475 476 477 478
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
479 480
        self._assert_in_rnn_block_('memory')
        if init is None:
481
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
482
                raise ValueError(
483
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
484
            parent_block = self.parent_block()
Y
Yu Yang 已提交
485 486
            var_name = unique_name.generate("@".join(
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
487
            boot_var = parent_block.create_var(
488 489
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
490
                dtype=batch_ref.dtype,
491
                persistable=False)
Y
Yu Yang 已提交
492 493

            parent_block.append_op(
494 495
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
496 497 498
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
499
                    'shape': boot_var.shape,
F
fengjiayi 已提交
500
                    'dtype': boot_var.dtype,
501 502
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
503 504 505 506 507
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
Y
Yu Yang 已提交
508
                name=unique_name.generate("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
509
                dtype=init.dtype,
Y
Yu Yang 已提交
510 511 512 513 514 515 516 517 518 519
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
520 521
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
522 523 524
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
525
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
526 527 528 529 530 531 532 533
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
534
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
535 536 537 538
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
539
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
540

Y
Yu Yang 已提交
541
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
542 543
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
544
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
558
        prog = self.helper.main_program
Y
Yu Yang 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

Y
Yang Yang 已提交
574
    def complete_op(self):
575 576
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
616
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
617 618 619 620 621

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
622
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
638
                'sub_block': rnn_block
Y
Yu Yang 已提交
639
            })
Y
Yu Yang 已提交
640 641


Y
Yang Yang(Tony) 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
662 663 664 665 666 667 668 669 670 671
    """
    while loop control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str): The name of this layer.

    Examples:
          .. code-block:: python

X
Xin Pan 已提交
672 673 674
            d0 = layers.data("d0", shape=[10], dtype='float32')
            data_array = layers.array_write(x=d0, i=i)
            array_len = layers.fill_constant(shape=[1],dtype='int64', value=3)
X
Xin Pan 已提交
675

X
Xin Pan 已提交
676 677 678 679 680 681 682
            cond = layers.less_than(x=i, y=array_len)
            while_op = layers.While(cond=cond)
            with while_op.block():
                d = layers.array_read(array=data_array, i=i)
                i = layers.increment(x=i, in_place=True)
                layers.array_write(result, i=i, array=d)
                layers.less_than(x=i, y=array_len, cond=cond)
X
Xin Pan 已提交
683 684
    """

Y
Yang Yang(Tony) 已提交
685 686 687 688
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

689 690
    def __init__(self, cond, name=None):
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
691 692 693 694
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
695
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
Y
Yu Yang 已提交
733 734
                'X':
                [parent_block.var_recursive(x_name) for x_name in x_name_list],
Y
Yang Yang(Tony) 已提交
735 736 737 738
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
739
            attrs={'sub_block': while_block})
Y
Yang Yang(Tony) 已提交
740 741


742
def lod_rank_table(x, level=0):
Y
yangyaming 已提交
743 744 745
    """LoD Rank Table Operator. Given an input variable **x** and a level number
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
746
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
747 748 749
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
750 751 752 753

        .. code-block:: text

            x is a LoDTensor:
754 755
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
756 757
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
758 759 760
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
761

Y
yangyaming 已提交
762 763 764 765 766 767 768 769 770
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
771 772 773 774

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
775 776
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
777 778 779 780 781 782 783 784

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
785
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
786
            out = layers.lod_rank_table(x=x, level=0)
787
    """
Y
Yu Yang 已提交
788 789 790
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
791
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
792 793 794 795 796 797
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
798 799


Y
yuyang18 已提交
800
@templatedoc()
801
def max_sequence_len(rank_table):
Y
yuyang18 已提交
802 803 804 805 806 807 808 809
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
810 811

    Args:
Y
yuyang18 已提交
812
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
813 814

    Returns:
Y
yuyang18 已提交
815
        ${out_comment}.
F
fengjiayi 已提交
816 817 818 819 820 821 822 823 824 825
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


826
def lod_tensor_to_array(x, table):
F
fengjiayi 已提交
827 828 829 830 831
    """ 
    Convert a LoDTensor to a LoDTensorArray.

    This function split a LoDTesnor to a LoDTensorArray according to its LoD 
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in 
F
fengjiayi 已提交
832 833 834
    PaddlePaddle. The generated LoDTensorArray of this function can be further read 
    or written by `read_from_array()` and `write_to_array()` operators. However, 
    this function is generally an internal component of PaddlePaddle `DynamicRNN`. 
F
fengjiayi 已提交
835
    Users should not use it directly.
836 837

    Args:
F
fengjiayi 已提交
838
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
839 840
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
F
fengjiayi 已提交
841
                                descending order. It is generally generated 
F
fengjiayi 已提交
842
                                by `layers.lod_rank_table()` API.
843 844

    Returns:
F
fengjiayi 已提交
845
        Variable: The LoDTensorArray that has been converted from the input tensor.
846 847 848 849 850 851 852

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
853
    """
854 855
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
856
        name=unique_name.generate("lod_tensor_to_array"),
857
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
858
        dtype=x.dtype)
859 860 861 862 863 864 865 866
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


867
def array_to_lod_tensor(x, table):
868
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
869 870

    Args:
871
        x (Variable|list): The lod tensor array to be converted to a tensor.
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
887
    """
888
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
889
    tmp = helper.create_tmp_variable(dtype=x.dtype)
890 891 892 893 894 895 896 897
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


898
def increment(x, value=1.0, in_place=True):
899 900
    """
    This function performs an operation that increments each value in the
901 902 903 904 905 906 907 908 909
    input :math:`x` by an amount: :math:`value` as mentioned in the input
    parameter. This operation is performed in-place by default.

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
910
        Variable: The elementwise-incremented object.
911 912 913 914 915 916

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
917
    """
Y
Yu Yang 已提交
918
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
919
    if not in_place:
F
fengjiayi 已提交
920
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
921 922
    else:
        out = x
Y
Yu Yang 已提交
923 924 925
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
926
        outputs={'Out': [out]},
927
        attrs={'step': float(value)})
Y
Yang Yu 已提交
928
    return out
Y
Yu Yang 已提交
929 930


931
def array_write(x, i, array=None):
932 933 934 935 936
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
937 938 939

    Args:
        x (Variable|list): The input tensor from which the data will be read.
940 941 942 943 944 945 946 947
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

948
    Returns:
949
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
950 951

    Examples:
D
dzhwinter 已提交
952
        .. code-block:: python
953 954 955 956

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
957
    """
Y
Yu Yang 已提交
958 959 960 961 962
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
963
            dtype=x.dtype)
Y
Yu Yang 已提交
964 965 966 967 968 969 970 971
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


972
def create_array(dtype):
973
    """
Q
qiaolongfei 已提交
974
    **Create LoDTensorArray**
975

Q
qiaolongfei 已提交
976 977
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
978 979

    Args:
Q
qiaolongfei 已提交
980
        dtype (int|float): The data type of the elements in the lod_tensor_array.
981 982

    Returns:
983
        Variable: The lod_tensor_array variable storing the elements of data type.
984 985 986 987 988 989 990

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
991 992 993 994 995 996 997
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
998 999
@templatedoc()
def less_than(x, y, force_cpu=None, cond=None, **ignored):
1000
    """
Y
yuyang18 已提交
1001
    ${comment}
1002

Y
yuyang18 已提交
1003 1004
    >>> import paddle.fluid as fluid
    >>> less = fluid.layers.less_than(x=label, y=limit)
1005 1006

    Args:
Y
yuyang18 已提交
1007 1008 1009
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
1010 1011 1012
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
1013
        ${out_comment}.
1014
    """
Y
Yang Yang(Tony) 已提交
1015 1016 1017 1018 1019
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

Y
yuyang18 已提交
1020 1021 1022 1023 1024 1025
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
1026
    helper.append_op(
J
JiayiFeng 已提交
1027 1028 1029 1030
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1031
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1032 1033 1034
    return cond


1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
def equal(x, y, cond=None, **ignored):
    """
    **equal**

    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


1065
def array_read(array, i):
1066 1067
    """
    This function performs the operation to read the data in as an
1068
    LOD_TENSOR_ARRAY.
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
        
        And:
        
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1084
    Args:
1085 1086 1087
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1088 1089
    Returns:
        Variable: The tensor type variable that has the data written to it.
1090

K
kavyasrinet 已提交
1091
    Examples:
1092 1093
        .. code-block:: python

K
kavyasrinet 已提交
1094 1095 1096
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_read(tmp, i=i)
1097
    """
Y
Yu Yang 已提交
1098 1099 1100 1101 1102
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
1103
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
1104 1105 1106 1107 1108 1109
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1110 1111


1112
def shrink_memory(x, i, table):
1113
    """
Y
yuyang18 已提交
1114
    This function creates an operator to shrink rnn memory using the RankTable
1115
    as mentioned in the input parameter.
Y
yuyang18 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1136
    """
Y
Yang Yu 已提交
1137
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
1138
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
1139
    helper.append_op(
Y
Yang Yu 已提交
1140
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1141 1142 1143 1144 1145 1146
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1147 1148


1149
def array_length(array):
1150
    """
Q
qiaolongfei 已提交
1151
    **Get the Length of Input LoDTensorArray**
1152 1153

    This function performs the operation to find the length of the input
1154
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1155

1156 1157
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1158 1159 1160 1161 1162 1163 1164 1165
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1166
        .. code-block:: python
K
kavyasrinet 已提交
1167 1168 1169 1170 1171

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1172

1173
    """
Y
Yang Yu 已提交
1174 1175 1176 1177 1178 1179
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1180 1181 1182


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1183 1184 1185 1186 1187 1188 1189
    """
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for 
    holding a ConditionalBlock, and helping users entering and exiting the 
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard 
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1231
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1232 1233 1234 1235
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1236
        self.is_scalar_condition = is_scalar_condition
1237
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
Q
Qingsheng Li 已提交
1262
            parent_block.var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1263 1264 1265 1266 1267
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
X
xuwei06 已提交
1268
            if var_name in intermediate
Y
Yu Yang 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1281 1282 1283 1284 1285 1286 1287
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1288
    """
Q
qiaolongfei 已提交
1289 1290
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1291 1292 1293 1294

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1295

Q
qiaolongfei 已提交
1296
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1297 1298 1299 1300

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1301 1302 1303 1304

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
            lr = fluid.layers.tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
            one_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=1.0)
            two_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=2.0)

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1317
                with switch.case(global_step == zero_var):
Q
qiaolongfei 已提交
1318 1319 1320
                    fluid.layers.tensor.assign(input=one_var, output=lr)
                with switch.default():
                    fluid.layers.tensor.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1321 1322 1323

    """

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        """create a new block for this condition
        """
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
Q
qiaolongfei 已提交
1353 1354
        """
        create a default case for this switch
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
        """
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1423

X
improve  
Xin Pan 已提交
1424
            limit = fluid.layers.fill_constant_batch_size_like(
X
Xin Pan 已提交
1425
                input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1426 1427
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1428 1429
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1430 1431
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1432 1433 1434 1435
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1436 1437 1438
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1439 1440 1441
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1442 1443 1444 1445
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1446
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1447 1448
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1449
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
            parent_block = self.parent_block()
            out_true = parent_block.create_var(
Y
Yu Yang 已提交
1463
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1464
                dtype=x.dtype)
Y
Yu Yang 已提交
1465 1466

            out_false = parent_block.create_var(
Y
Yu Yang 已提交
1467
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1468
                dtype=x.dtype)
Y
Yu Yang 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

    def parent_block(self):
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
        parent_block = self.parent_block()
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
Y
Yu Yang 已提交
1509 1510
                name=unique_name.generate("_".join(
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1511
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1512 1513 1514
            out_table.append(outside_out)

            # assign local var to outside
1515
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
        false_len, true_len = map(len, self.output_table)
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1539
                    level=0))
Y
Yu Yang 已提交
1540
        return rlist
1541 1542 1543


class DynamicRNN(object):
Y
yuyang18 已提交
1544
    """
Y
yuyang18 已提交
1545 1546 1547
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575

    The input lod must be set. Please reference `lod_tensor`

    >>> import paddle.fluid as fluid
    >>> data = fluid.layers.data(name='sentence', dtype='int64', lod_level=1)
    >>> embedding = fluid.layers.embedding(input=data, size=[65535, 32],
    >>>                                    is_sparse=True)
    >>>
    >>> drnn = fluid.layers.DynamicRNN()
    >>> with drnn.block():
    >>>     word = drnn.step_input(embedding)
    >>>     prev = drnn.memory(shape=[200])
    >>>     hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
    >>>     drnn.update_memory(prev, hidden)  # set prev to hidden
    >>>     drnn.output(hidden)
    >>>
    >>> # last is the last time step of rnn. It is the encoding result.
    >>> last = fluid.layers.sequence_last_step(drnn())

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
    """
1576 1577 1578 1579
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1580 1581
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1582 1583 1584 1585
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1586 1587
        self.zero_idx = fill_constant(
            shape=[1], value=0, dtype='int64', force_cpu=True)
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
        self.cond = self.helper.create_tmp_variable(dtype='bool')
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

    def step_input(self, x):
Y
yuyang18 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606
        """
        Mark a sequence as a dynamic RNN input.
        Args:
            x(Variable): The input sequence.

        Returns:
            The current timestep in the input sequence.

        """
1607 1608 1609
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1610
                "step_input() can only take a Variable as its input.")
1611 1612 1613
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1614
                name=unique_name.generate('lod_rank_table'),
1615 1616 1617 1618 1619 1620 1621
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table})
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1622 1623
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1634 1635
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1636 1637

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1638
            name=unique_name.generate('dynamic_rnn_input_array'),
1639 1640 1641 1642 1643 1644 1645 1646
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1647
        return array_read(array=input_array, i=self.step_idx)
1648

Y
yangyaming 已提交
1649
    def static_input(self, x):
Y
yuyang18 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658
        """
        Mark a variable as a RNN input. The input will not be scattered into
        time steps.
        Args:
            x(Variable): The input variable.

        Returns:
            The input variable that can access in RNN.
        """
Y
yangyaming 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1668
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

1678 1679
    @contextlib.contextmanager
    def block(self):
Y
yuyang18 已提交
1680 1681 1682 1683
        """
        The block for user to define operators in RNN. See the class docstring
        for more details.
        """
1684 1685
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1686 1687
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1688 1689 1690 1691
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1692
            increment(x=self.step_idx, value=1.0, in_place=True)
1693 1694

            for new_mem, mem_array in self.mem_link:
1695 1696
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1697 1698 1699 1700 1701
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1702 1703 1704 1705 1706

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1707
                    x=each_array, table=self.lod_rank_table))
1708 1709

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1710 1711 1712
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1713
        if self.status != DynamicRNN.AFTER_RNN:
1714 1715
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1716 1717 1718 1719 1720
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1721 1722 1723 1724 1725 1726
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1727
        """
Y
yuyang18 已提交
1728
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>> boot_memory = fluid.layers.data(
        >>>                 name='boot', dtype='float32', shape=[10])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(init=boot_memory, need_reorder=True)
        >>>     hidden = fluid.layers.fc(
        >>>                 input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(shape=[10], dtype='float32', value=0)
        >>>     hidden = fluid.layers.fc(
        >>>             input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Args:
            init(Variable|None): The initialized variable.

            shape(list|tuple): The memory shape. NOTE the shape does not contain
            batch_size.

            value(float): the initalized value.

            need_reorder(bool): True if the initialized memory depends on the
            input sample.

            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
            the memory variable.

        """
1791 1792 1793 1794 1795 1796
        self._assert_in_rnn_block_('memory')
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1797 1798 1799 1800 1801 1802 1803 1804
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1805
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1816
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1817
                name=unique_name.generate('dynamic_rnn_mem_array'),
1818 1819 1820 1821
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1822
                inputs={'X': init_tensor,
1823 1824
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1825
            retv = array_read(array=mem_array, i=self.step_idx)
1826
            retv = shrink_memory(
1827
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1828 1829 1830 1831 1832 1833 1834 1835 1836
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
1837
                name=unique_name.generate('mem_init'), dtype=dtype)
1838
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
1839 1840
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
1885 1886 1887 1888 1889 1890 1891 1892 1893
        """
        mark the RNN output variables.

        Args:
            outputs: The output variables.

        Returns:
            None
        """
1894 1895 1896 1897
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
Y
Yu Yang 已提交
1898
                name=unique_name.generate("_".join(
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
1917 1918


1919
@autodoc()
Y
Yang Yu 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
def reorder_lod_tensor_by_rank(x, rank_table):
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
1932 1933 1934 1935


def is_empty(x, cond=None, **ignored):
    """
F
fengjiayi 已提交
1936
    Test whether a Variable is empty.
1937 1938

    Args:
F
fengjiayi 已提交
1939 1940
        x (Variable): The Variable to be tested.
        cond (Variable|None): Output parameter. Returns the test result 
F
fengjiayi 已提交
1941
                              of given 'x'. Default: None
1942 1943

    Returns:
F
fengjiayi 已提交
1944
        Variable: A bool scalar. True if 'x' is an empty Variable.
1945 1946 1947

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
1948
                   not bool.
1949 1950 1951 1952

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
1953 1954 1955
          res = fluid.layers.is_empty(x=input)
          # or:
          fluid.layers.is_empty(x=input, cond=res)
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond