sequence_slice_op.h 6.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/strided_memcpy.h"
19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;

template <typename T>
28
inline LoD SequenceSliceLoD(const T& in, const int64_t* offset_data,
D
dzhwinter 已提交
29
                            const int64_t* length_data) {
30
  auto out_lod = in.lod();
31 32
  size_t lod_offset = 0;

33
  auto n = in.lod()[0].size() - 1;
34 35
  out_lod[0][0] = 0;
  for (size_t i = 0; i < n; ++i) {
36
    lod_offset += length_data[i];
D
dzhwinter 已提交
37
    out_lod[0][i + 1] = lod_offset;
38 39 40 41
  }
  return out_lod;
}

Q
QI JUN 已提交
42
template <typename DeviceContext, typename T>
43
class SequenceSliceOpKernel : public framework::OpKernel<T> {
44 45 46
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<LoDTensor>("X");
47 48
    auto* offset = ctx.Input<Tensor>("Offset");
    auto* length = ctx.Input<Tensor>("Length");
49 50
    auto* out = ctx.Output<LoDTensor>("Out");

51 52 53
    auto lod = in->lod();
    auto n = lod[0].size() - 1;

D
dzhwinter 已提交
54
    PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
55
    PADDLE_ENFORCE_EQ(
W
wanghaox 已提交
56
        n, static_cast<size_t>(length->dims()[0]),
57
        "The size of input-sequence and length-array should be the same");
58
    PADDLE_ENFORCE_EQ(
W
wanghaox 已提交
59
        n, static_cast<size_t>(offset->dims()[0]),
60
        "The size of input-sequence and offset-array should be the same");
61

62 63
    const int64_t* offset_data = offset->data<int64_t>();
    const int64_t* length_data = length->data<int64_t>();
64 65
    framework::Tensor offset_cpu;
    framework::Tensor length_cpu;
66 67 68

    if (platform::is_gpu_place(ctx.GetPlace())) {
      offset_cpu.mutable_data<T>(offset->dims(), platform::CPUPlace());
Y
Yi Wang 已提交
69 70
      framework::TensorCopy(*offset, platform::CPUPlace(), ctx.device_context(),
                            &offset_cpu);
71 72 73
      offset_data = offset_cpu.data<int64_t>();

      length_cpu.mutable_data<T>(length->dims(), platform::CPUPlace());
Y
Yi Wang 已提交
74 75
      framework::TensorCopy(*length, platform::CPUPlace(), ctx.device_context(),
                            &length_cpu);
76 77
      length_data = length_cpu.data<int64_t>();
    }
78 79

    for (size_t i = 0; i < n; ++i) {
80
      PADDLE_ENFORCE_LT(0, offset_data[i],
81
                        "The offset[%d] must greater than zero.", i);
82
      PADDLE_ENFORCE_LT(0, length_data[i],
83
                        "The length[%d] must greater than zero.", i);
D
dzhwinter 已提交
84
      PADDLE_ENFORCE_LT(lod[0][i] + offset_data[i] + length_data[i],
85
                        lod[0][i + 1], "The target tensor's length overflow.");
W
wanghaox 已提交
86
    }
87 88

    out->mutable_data<T>(ctx.GetPlace());
89
    auto out_lod = SequenceSliceLoD(*in, offset_data, length_data);
90 91 92
    auto out_dims = in->dims();
    out_dims[0] = out_lod[0][out_lod[0].size() - 1];
    out->Resize(out_dims);
93 94 95 96 97 98 99
    out->set_lod(out_lod);

    auto in_stride = framework::stride(in->dims());
    auto out_stride = framework::stride(out->dims());

    size_t out_offset = 0;
    for (size_t i = 0; i < n; ++i) {
D
dzhwinter 已提交
100 101 102 103 104 105
      Tensor in_t = in->Slice(
          static_cast<int>(lod[0][i] + offset_data[i]),
          static_cast<int>(lod[0][i] + offset_data[i] + length_data[i]));

      StridedMemcpy<T>(ctx.device_context(), in_t.data<T>(), in_stride,
                       in_t.dims(), out_stride, out->data<T>() + out_offset);
106
      out_offset += length_data[i] * in_stride[0];
107 108 109 110
    }
  }
};

Q
QI JUN 已提交
111
template <typename DeviceContext, typename T>
112
class SequenceSliceGradOpKernel : public framework::OpKernel<T> {
113 114 115
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<LoDTensor>("X");
116 117
    auto* offset = ctx.Input<Tensor>("Offset");
    auto* length = ctx.Input<Tensor>("Length");
118 119 120 121 122
    auto* out_grad =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    auto* x_grad =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));

123 124
    const int64_t* offset_data = offset->data<int64_t>();
    const int64_t* length_data = length->data<int64_t>();
W
wanghaox 已提交
125 126
    framework::Tensor offset_cpu;
    framework::Tensor length_cpu;
127

128 129
    if (platform::is_gpu_place(ctx.GetPlace())) {
      offset_cpu.mutable_data<T>(offset->dims(), platform::CPUPlace());
Y
Yi Wang 已提交
130 131
      framework::TensorCopy(*offset, platform::CPUPlace(), ctx.device_context(),
                            &offset_cpu);
132
      offset_data = offset_cpu.data<int64_t>();
133

134
      length_cpu.mutable_data<T>(length->dims(), platform::CPUPlace());
Y
Yi Wang 已提交
135 136
      framework::TensorCopy(*length, platform::CPUPlace(), ctx.device_context(),
                            &length_cpu);
137
      length_data = length_cpu.data<int64_t>();
138 139
    }

140
    auto lod = in->lod();
141
    auto out_lod = out_grad->lod();
142

W
wanghaox 已提交
143 144
    if (x_grad) {
      x_grad->mutable_data<T>(ctx.GetPlace());
W
wanghaox 已提交
145
      x_grad->set_lod(in->lod());
Q
QI JUN 已提交
146 147 148
      math::SetConstant<DeviceContext, T> set_zero;
      set_zero(ctx.template device_context<DeviceContext>(), x_grad,
               static_cast<T>(0));
149

W
wanghaox 已提交
150
      auto out_grad_stride = framework::stride(out_grad->dims());
151

W
wanghaox 已提交
152 153 154 155 156
      for (size_t i = 0; i < out_lod[0].size() - 1; ++i) {
        Tensor out_grad_t =
            out_grad->Slice(static_cast<int>(out_lod[0][i]),
                            static_cast<int>(out_lod[0][i + 1]));
        auto out_grad_stride = framework::stride(out_grad_t.dims());
157

W
wanghaox 已提交
158
        auto x_grad_stride = framework::stride(x_grad->dims());
159

W
wanghaox 已提交
160 161 162
        Tensor x_grad_t = x_grad->Slice(
            static_cast<int>(lod[0][i] + offset_data[i]),
            static_cast<int>(lod[0][i] + offset_data[i] + length_data[i]));
163

W
wanghaox 已提交
164
        StridedMemcpy<T>(ctx.device_context(), out_grad_t.data<T>(),
D
dzhwinter 已提交
165 166
                         out_grad_stride, out_grad_t.dims(), x_grad_stride,
                         x_grad_t.data<T>());
W
wanghaox 已提交
167
      }
168 169 170 171 172 173
    }
  }
};

}  // namespace operators
}  // namespace paddle