Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
b24afd81
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b24afd81
编写于
11月 14, 2017
作者:
W
wanghaox
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update the sub_sequence_op to sequence_slice_op code.
上级
f23d6cc4
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
140 addition
and
113 deletion
+140
-113
paddle/operators/sequence_slice_op.cc
paddle/operators/sequence_slice_op.cc
+58
-40
paddle/operators/sequence_slice_op.cu
paddle/operators/sequence_slice_op.cu
+5
-7
paddle/operators/sequence_slice_op.h
paddle/operators/sequence_slice_op.h
+66
-53
python/paddle/v2/framework/tests/test_sequence_slice_op.py
python/paddle/v2/framework/tests/test_sequence_slice_op.py
+11
-13
未找到文件。
paddle/operators/sequence_slice_op.cc
浏览文件 @
b24afd81
...
...
@@ -12,37 +12,39 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/s
ub_sequen
ce_op.h"
#include "paddle/operators/s
equence_sli
ce_op.h"
namespace
paddle
{
namespace
operators
{
class
S
ubSequen
ceOp
:
public
framework
::
OperatorWithKernel
{
class
S
equenceSli
ceOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of SubSequenceOp should not be null."
);
"Input(X) of SequenceSliceOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Offset"
),
"Input(Offset) of SequenceSliceOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Length"
),
"Input(Length) of SequenceSliceOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of S
ubSequen
ceOp should not be null."
);
"Output(Out) of S
equenceSli
ceOp should not be null."
);
auto
input_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
offsets
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"offset"
);
auto
sizes
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"size"
);
auto
dim_0
=
0
;
for
(
size_t
i
=
0
;
i
<
sizes
.
size
();
++
i
)
{
dim_0
+=
sizes
[
i
];
ctx
->
SetOutputDim
(
"Out"
,
input_dims
);
}
framework
::
DDim
out_dims
=
input_dims
;
out_dims
[
0
]
=
dim_0
;
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
protected:
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
};
class
S
ubSequen
ceGradOp
:
public
framework
::
OperatorWithKernel
{
class
S
equenceSli
ceGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -53,34 +55,50 @@ class SubSequenceGradOp : public framework::OperatorWithKernel {
"The gradient of X should not be null."
);
ctx
->
SetOutputsDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputsDim
(
"X"
));
}
protected:
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
};
class
S
ubSequen
ceOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
S
equenceSli
ceOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
S
ubSequen
ceOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
S
equenceSli
ceOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(LoDTensor), "
"the variable-length input of SubSequenceOp"
);
AddAttr
<
std
::
vector
<
int
>>
(
"offset"
,
"A list<int> to describes offset for sub sequence item."
);
AddAttr
<
std
::
vector
<
int
>>
(
"size"
,
"A list<int> to describes size for sub sequence item."
);
AddInput
(
"X"
,
"(LoDTensor), "
"the input of SequenceSliceOp."
);
AddInput
(
"Offset"
,
"(Tensor), "
"A vector<int> to describes offset for sub sequence item."
);
AddInput
(
"Length"
,
"(Tensor), "
"A vector<int> to describes length for sub sequence item."
);
AddOutput
(
"Out"
,
"(Tensor), Variable-length output of "
"sequence_concat Op."
);
"(LoDTensor), output of sequence slice Op."
);
AddComment
(
R"DOC(
Sub Sequence operator
The operator crop a subsequence from given sequence with given start offset and subsequence size.
Sequence slice operator
The operator crop a subsequence from given sequence with given start offset and subsequence length.
It only supports sequence (LoD Tensor with level number is 1).
- Case:
LoD(x) = {{0, 3, 6, 10}}; Dims(x0) = (10, 3, 2)
offset = (0, 1, 1); size = (2, 1, 2)
LoD(Out) = {{0, 2, 3, 5}}; Dims(Out) = (5,3,2)
NOTE: The length of the input, offset and size should be the same. The offset start from 0.
X = [[a1, a2;
b1, b2;
c1, c2]
[d1, d2;
e1, e2]]
LoD(X) = {{0, 3, 5}}; Dims(X) = (4, 1, 2)
Offset = (0, 1); Length = (2, 1)
Out = [[a1, a2;
b1, b2]
[e1, e2]]
LoD(Out) = {{0, 2, 3}}
NOTE: The length of the input, offset and length should be the same. The offset start from 0.
)DOC"
);
}
};
...
...
@@ -89,11 +107,11 @@ NOTE: The length of the input, offset and size should be the same. The offset st
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
s
ub_sequence
,
ops
::
SubSequenceOp
,
ops
::
SubSequen
ceOpMaker
,
s
ub_sequence_grad
,
ops
::
SubSequen
ceGradOp
);
REGISTER_OP
(
s
equence_slice
,
ops
::
SequenceSliceOp
,
ops
::
SequenceSli
ceOpMaker
,
s
equence_slice_grad
,
ops
::
SequenceSli
ceGradOp
);
REGISTER_OP_CPU_KERNEL
(
s
ub_sequen
ce
,
ops
::
S
ubSequen
ceOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
s
equence_sli
ce
,
ops
::
S
equenceSli
ceOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
s
ub_sequen
ce_grad
,
ops
::
S
ubSequen
ceGradOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
s
equence_sli
ce_grad
,
ops
::
S
equenceSli
ceGradOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/sequence_slice_op.cu
浏览文件 @
b24afd81
...
...
@@ -12,14 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/sub_sequence_op.h"
#include "paddle/operators/sequence_slice_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
s
ub_sequen
ce
,
ops
::
S
ubSequen
ceOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
s
equence_sli
ce
,
ops
::
S
equenceSli
ceOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
s
ub_sequen
ce_grad
,
ops
::
S
ubSequen
ceGradOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
s
equence_sli
ce_grad
,
ops
::
S
equenceSli
ceGradOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/sequence_slice_op.h
浏览文件 @
b24afd81
...
...
@@ -13,8 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/strided_memcpy.h"
namespace
paddle
{
...
...
@@ -25,109 +25,124 @@ using LoDTensor = framework::LoDTensor;
using
LoD
=
framework
::
LoD
;
template
<
typename
T
>
LoD
subsequenceLoD
(
const
T
*
in
,
const
std
::
vector
<
int
>
offsets
,
const
std
::
vector
<
int
>
sizes
)
{
auto
out_lod
=
in
->
lod
();
LoD
SequenceSliceLoD
(
const
T
&
in
,
const
int64_t
*
offset_data
,
const
int64_t
*
length_data
)
{
auto
out_lod
=
in
.
lod
();
size_t
lod_offset
=
0
;
auto
n
=
in
->
lod
()[
0
].
size
()
-
1
;
auto
n
=
in
.
lod
()[
0
].
size
()
-
1
;
out_lod
[
0
][
0
]
=
0
;
for
(
size_t
i
=
0
;
i
<
n
;
++
i
)
{
lod_offset
+=
sizes
[
i
];
lod_offset
+=
length_data
[
i
];
out_lod
[
0
][
i
+
1
]
=
lod_offset
;
}
return
out_lod
;
}
template
<
typename
Place
,
typename
T
>
class
S
ubSequen
ceOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
S
equenceSli
ceOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
std
::
vector
<
int
>
offsets
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"o
ffset"
);
std
::
vector
<
int
>
sizes
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"size
"
);
auto
*
offset
=
ctx
.
Input
<
Tensor
>
(
"O
ffset"
);
auto
*
length
=
ctx
.
Input
<
Tensor
>
(
"Length
"
);
auto
*
out
=
ctx
.
Output
<
LoDTensor
>
(
"Out"
);
auto
offset_len
=
offsets
.
size
();
auto
size_len
=
sizes
.
size
();
const
int64_t
*
offset_data
=
offset
->
data
<
int64_t
>
();
const
int64_t
*
length_data
=
length
->
data
<
int64_t
>
();
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
framework
::
Tensor
offset_cpu
;
offset_cpu
.
mutable_data
<
T
>
(
offset
->
dims
(),
platform
::
CPUPlace
());
offset_cpu
.
CopyFrom
(
*
offset
,
platform
::
CPUPlace
(),
ctx
.
device_context
());
offset_data
=
offset_cpu
.
data
<
int64_t
>
();
framework
::
Tensor
length_cpu
;
length_cpu
.
mutable_data
<
T
>
(
length
->
dims
(),
platform
::
CPUPlace
());
length_cpu
.
CopyFrom
(
*
length
,
platform
::
CPUPlace
(),
ctx
.
device_context
());
length_data
=
length_cpu
.
data
<
int64_t
>
();
}
auto
lod
=
in
->
lod
();
auto
n
=
lod
[
0
].
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
lod
.
size
(),
1UL
,
"Only support one level sequence now."
);
PADDLE_ENFORCE_EQ
(
n
,
offset_len
,
"The length of input and offset should be the same"
)
PADDLE_ENFORCE_EQ
(
n
,
size_len
,
"The length of input and size should be the same"
)
PADDLE_ENFORCE_EQ
(
offset
->
dims
().
size
(),
1UL
,
"Only support one level sequence now."
);
PADDLE_ENFORCE_EQ
(
length
->
dims
().
size
(),
1UL
,
"Only support one level sequence now."
);
PADDLE_ENFORCE_EQ
(
n
,
length
->
dims
()[
0
],
"The size of input-sequence and length-array should be the same"
)
PADDLE_ENFORCE_EQ
(
n
,
offset
->
dims
()[
0
],
"The size of input-sequence and offset-array should be the same"
)
for
(
size_t
i
=
0
;
i
<
n
;
++
i
)
{
auto
offset
=
offsets
[
i
];
auto
size
=
sizes
[
i
];
PADDLE_ENFORCE_LT
(
lod
[
0
][
i
]
+
offset
+
size
,
lod
[
0
][
i
+
1
],
"The target tensor's length overflow"
)
PADDLE_ENFORCE_LT
(
0
,
offset_data
[
i
],
"The offset must greater than zero"
)
PADDLE_ENFORCE_LT
(
0
,
length_data
[
i
],
"The length must greater than zero"
)
PADDLE_ENFORCE_LT
(
lod
[
0
][
i
]
+
offset
_data
[
i
]
+
length_data
[
i
],
lod
[
0
][
i
+
1
],
"The target tensor's length overflow"
)
}
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
out_lod
=
subsequenceLoD
(
in
,
offsets
,
sizes
);
auto
out_lod
=
SequenceSliceLoD
(
*
in
,
offset_data
,
length_data
);
out
->
set_lod
(
out_lod
);
math
::
SetConstant
<
Place
,
T
>
set_zero
;
set_zero
(
ctx
.
device_context
(),
out
,
static_cast
<
T
>
(
0
));
auto
in_stride
=
framework
::
stride
(
in
->
dims
());
auto
out_stride
=
framework
::
stride
(
out
->
dims
());
size_t
out_offset
=
0
;
for
(
size_t
i
=
0
;
i
<
n
;
++
i
)
{
auto
offset
=
offsets
[
i
];
auto
size
=
sizes
[
i
];
Tensor
in_t
=
in
->
Slice
(
static_cast
<
int
>
(
lod
[
0
][
i
]
+
offset
),
static_cast
<
int
>
(
lod
[
0
][
i
]
+
offset
+
size
));
Tensor
in_t
=
in
->
Slice
(
static_cast
<
int
>
(
lod
[
0
][
i
]
+
offset_data
[
i
]),
static_cast
<
int
>
(
lod
[
0
][
i
]
+
offset_data
[
i
]
+
length_data
[
i
]));
StridedMemcpy
<
T
>
(
ctx
.
device_context
(),
in_t
.
data
<
T
>
(),
in_stride
,
in_t
.
dims
(),
out_stride
,
out
->
data
<
T
>
()
+
out_offset
);
out_offset
+=
size
*
in_stride
[
0
];
out_offset
+=
length_data
[
i
]
*
in_stride
[
0
];
}
}
};
template
<
typename
Place
,
typename
T
>
class
S
ubSequen
ceGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
S
equenceSli
ceGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
std
::
vector
<
int
>
offsets
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"o
ffset"
);
std
::
vector
<
int
>
sizes
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"size
"
);
auto
*
offset
=
ctx
.
Input
<
Tensor
>
(
"O
ffset"
);
auto
*
length
=
ctx
.
Input
<
Tensor
>
(
"Length
"
);
auto
*
out_grad
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
offset_len
=
offsets
.
size
();
auto
size_len
=
sizes
.
size
();
const
int64_t
*
offset_data
=
offset
->
data
<
int64_t
>
();
const
int64_t
*
length_data
=
length
->
data
<
int64_t
>
();
auto
lod
=
in
->
lod
();
auto
n
=
lod
[
0
].
size
()
-
1
;
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
framework
::
Tensor
offset_cpu
;
offset_cpu
.
mutable_data
<
T
>
(
offset
->
dims
(),
platform
::
CPUPlace
());
offset_cpu
.
CopyFrom
(
*
offset
,
platform
::
CPUPlace
(),
ctx
.
device_context
());
offset_data
=
offset_cpu
.
data
<
int64_t
>
();
// check input data format
PADDLE_ENFORCE_EQ
(
lod
.
size
(),
1UL
,
"Only support one level sequence now."
);
PADDLE_ENFORCE_EQ
(
n
,
offset_len
,
"The length of input and offset should be the same"
)
PADDLE_ENFORCE_EQ
(
n
,
size_len
,
"The length of input and size should be the same"
)
for
(
size_t
i
=
0
;
i
<
n
;
++
i
)
{
auto
offset
=
offsets
[
i
];
auto
size
=
sizes
[
i
];
PADDLE_ENFORCE_LT
(
lod
[
0
][
i
]
+
offset
+
size
,
lod
[
0
][
i
+
1
],
"The target tensor's length overflow"
)
framework
::
Tensor
length_cpu
;
length_cpu
.
mutable_data
<
T
>
(
length
->
dims
(),
platform
::
CPUPlace
());
length_cpu
.
CopyFrom
(
*
length
,
platform
::
CPUPlace
(),
ctx
.
device_context
());
length_data
=
length_cpu
.
data
<
int64_t
>
();
}
auto
out_lod
=
subsequenceLoD
(
in
,
offsets
,
sizes
);
auto
lod
=
in
->
lod
();
auto
out_lod
=
SequenceSliceLoD
(
*
in
,
offset_data
,
length_data
);
x_grad
->
set_lod
(
lod
);
x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
temp
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
x_grad
)
;
temp
.
device
(
ctx
.
GetEigenDevice
<
Place
>
())
=
temp
.
constant
(
static_cast
<
T
>
(
0
));
math
::
SetConstant
<
Place
,
T
>
set_zero
;
set_zero
(
ctx
.
device_context
(),
x_grad
,
static_cast
<
T
>
(
0
));
auto
out_grad_stride
=
framework
::
stride
(
out_grad
->
dims
());
...
...
@@ -139,11 +154,9 @@ class SubSequenceGradOpKernel : public framework::OpKernel<T> {
auto
x_grad_stride
=
framework
::
stride
(
x_grad
->
dims
());
auto
offset
=
offsets
[
i
];
auto
size
=
sizes
[
i
];
Tensor
x_grad_t
=
x_grad
->
Slice
(
static_cast
<
int
>
(
lod
[
0
][
i
]
+
offset
),
static_cast
<
int
>
(
lod
[
0
][
i
]
+
offset
+
size
));
Tensor
x_grad_t
=
x_grad
->
Slice
(
static_cast
<
int
>
(
lod
[
0
][
i
]
+
offset_data
[
i
]),
static_cast
<
int
>
(
lod
[
0
][
i
]
+
offset_data
[
i
]
+
length_data
[
i
]));
StridedMemcpy
<
T
>
(
ctx
.
device_context
(),
out_grad_t
.
data
<
T
>
(),
out_grad_stride
,
out_grad_t
.
dims
(),
x_grad_stride
,
...
...
python/paddle/v2/framework/tests/test_sequence_slice_op.py
浏览文件 @
b24afd81
...
...
@@ -3,31 +3,29 @@ import numpy as np
import
sys
from
op_test
import
OpTest
class
TestS
ubSequen
ceOp
(
OpTest
):
class
TestS
equenceSli
ceOp
(
OpTest
):
def
set_data
(
self
):
# only supprot one level LoD
x
=
np
.
random
.
random
((
100
,
3
,
2
)).
astype
(
'float32'
)
lod
=
[[
0
,
20
,
40
,
60
,
80
,
100
]]
offset
s
=
np
.
array
([
1
,
2
,
3
,
4
,
5
]).
flatten
(
)
sizes
=
np
.
array
([
10
,
8
,
6
,
4
,
2
]).
flatten
(
)
offset
=
np
.
array
([
1
,
2
,
3
,
4
,
5
]).
flatten
().
astype
(
"int64"
)
length
=
np
.
array
([
10
,
8
,
6
,
4
,
2
]).
flatten
().
astype
(
"int64"
)
self
.
inputs
=
{
'X'
:
(
x
,
lod
)}
self
.
attrs
=
{
'offset'
:
offsets
,
'size'
:
sizes
}
outs
=
[]
self
.
inputs
=
{
'X'
:
(
x
,
lod
),
'Offset'
:
offset
,
'Length'
:
length
}
outs
=
np
.
zeros
((
100
,
3
,
2
)).
astype
(
'float32'
)
out_lod
=
[[
0
]]
out_lod_offset
=
0
for
i
in
range
(
len
(
offsets
)):
sub_x
=
x
[
lod
[
0
][
i
]
+
offsets
[
i
]:
lod
[
0
]
[
i
]
+
offsets
[
i
]
+
sizes
[
i
],
:]
outs
.
append
(
sub_x
)
for
i
in
range
(
len
(
offset
)):
sub_x
=
x
[
lod
[
0
][
i
]
+
offset
[
i
]:
lod
[
0
]
[
i
]
+
offset
[
i
]
+
length
[
i
],
:]
out_lod_offset
=
out_lod_offset
+
len
(
sub_x
)
outs
[
out_lod
[
0
][
i
]:
out_lod_offset
,
:]
=
sub_x
out_lod
[
0
].
append
(
out_lod_offset
)
outs
=
np
.
concatenate
(
outs
,
axis
=
0
)
self
.
outputs
=
{
'Out'
:
outs
}
self
.
outputs
=
{
'Out'
:
(
outs
,
out_lod
)}
def
setUp
(
self
):
self
.
op_type
=
"s
ub_sequen
ce"
self
.
op_type
=
"s
equence_sli
ce"
self
.
set_data
()
def
test_check_output
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录