cpu_info.cc 27.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#ifdef LITE_WITH_LINUX
#include <sys/syscall.h>
#include <unistd.h>
#endif
#if __APPLE__
#include "TargetConditionals.h"
#if TARGET_OS_IPHONE
#include <mach/machine.h>
#include <sys/sysctl.h>
#include <sys/types.h>
#endif  // TARGET_OS_IPHONE
#endif  // __APPLE__

#ifdef ARM_WITH_OMP
#include <omp.h>
#endif

H
hong19860320 已提交
32 33
#include <algorithm>
#include <limits>
T
tensor-tang 已提交
34 35 36 37 38 39 40
#include "paddle/fluid/lite/core/cpu_info.h"

namespace paddle {
namespace lite {

#ifdef LITE_WITH_ARM

41
#ifdef TARGET_IOS
H
hong19860320 已提交
42 43 44
const int DEFAULT_L1_CACHE_SIZE = 64 * 1024;
const int DEFAULT_L2_CACHE_SIZE = 2048 * 1024;
const int DEFAULT_L3_CACHE_SIZE = 0;
45
#else
H
hong19860320 已提交
46 47 48
const int DEFAULT_L1_CACHE_SIZE = 32 * 1024;
const int DEFAULT_L2_CACHE_SIZE = 512 * 1024;
const int DEFAULT_L3_CACHE_SIZE = 0;
49 50
#endif

H
hong19860320 已提交
51
int get_cpu_num() {
52
#ifdef LITE_WITH_LINUX
H
hong19860320 已提交
53 54 55 56 57 58 59 60 61
  // get cpu count from /sys/devices/system/cpu/cpunum/uevent
  int max_cpu_num = 20;
  int cpu_num = 0;
  for (int i = 0; i < max_cpu_num; ++i) {
    char path[256];
    snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%d/uevent", i);
    FILE* fp = fopen(path, "rb");
    if (!fp) {
      break;
62
    }
H
hong19860320 已提交
63 64
    cpu_num++;
    fclose(fp);
65
  }
H
hong19860320 已提交
66 67
  if (cpu_num < 1) {
    cpu_num = 1;
68
  }
H
hong19860320 已提交
69 70 71 72 73 74 75
  return cpu_num;
#elif defined(TARGET_IOS)
  int cpu_num = 0;
  size_t len = sizeof(cpu_num);
  sysctlbyname("hw.ncpu", &cpu_num, &len, NULL, 0);
  if (cpu_num < 1) {
    cpu_num = 1;
76
  }
H
hong19860320 已提交
77
  return cpu_num;
78
#else
H
hong19860320 已提交
79
  return 1;
80
#endif
T
tensor-tang 已提交
81 82
}

H
hong19860320 已提交
83
size_t get_mem_size() {
T
tensor-tang 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
#ifdef LITE_WITH_LINUX
  // get cpu count from /proc/cpuinfo
  FILE* fp = fopen("/proc/meminfo", "rb");
  if (!fp) {
    return 1;
  }
  size_t memsize = 0;
  char line[1024];
  while (!feof(fp)) {
    char* s = fgets(line, 1024, fp);
    if (!s) {
      break;
    }
    sscanf(s, "MemTotal:        %d kB", &memsize);
  }
  fclose(fp);
  return memsize;
#elif defined(TARGET_IOS)
  // to be implemented
  printf("not implemented\n");
#endif
H
hong19860320 已提交
105
  return 0;
T
tensor-tang 已提交
106 107
}

H
hong19860320 已提交
108
void get_cpu_arch(std::vector<ARMArch>* archs, const int cpu_num) {
T
tensor-tang 已提交
109
  archs->clear();
H
hong19860320 已提交
110
#ifdef LITE_WITH_LINUX
T
tensor-tang 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  //! get CPU ARCH
  FILE* fp = fopen("/proc/cpuinfo", "rb");
  if (!fp) {
    return;
  }
  char line[1024];
  while (!feof(fp)) {
    char* s = fgets(line, 1024, fp);
    if (!s) {
      break;
    }
    if (strstr(line, "part") != NULL) {
      int arch_id = 0;
      sscanf(s, "CPU part\t: %x", &arch_id);
      switch (arch_id) {
        case 0xd03:
          archs->push_back(kA53);
          break;
        case 0xd05:
          archs->push_back(kA55);
          break;
        case 0xd07:
          archs->push_back(kA57);
          break;
        case 0xd08:
          archs->push_back(kA72);
          break;
        case 0xd09:
          archs->push_back(kA73);
          break;
        case 0xd0a:
          archs->push_back(kA75);
          break;
H
hong19860320 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        case 0xd40:
          archs->push_back(kA76);
          break;
        case 0x804:
          // 855
          archs->push_back(kA76);
          break;
        case 0x805:
          // 855
          archs->push_back(kA55);
          break;
        case 0x802:
          // 845
          archs->push_back(kA75);
          break;
        case 0x803:
          // 845
          archs->push_back(kA55);
          break;
        case 0x801:
          // 835
          archs->push_back(kA73);
          break;
T
tensor-tang 已提交
167 168 169 170 171 172 173 174 175
        case 0x800:
          // 835
          archs->push_back(kA73);
          break;
        case 0x205:
          // 820
          archs->push_back(kA72);
          break;
        default:
H
hong19860320 已提交
176
          LOG(ERROR) << "Unknow cpu arch: " << arch_id;
T
tensor-tang 已提交
177 178 179 180 181
          archs->push_back(kARMArch_UNKOWN);
      }
    }
  }
  fclose(fp);
H
hong19860320 已提交
182 183
  if (archs->size() < cpu_num) {
    for (int i = archs->size(); i < cpu_num; ++i) {
T
tensor-tang 已提交
184 185 186
      archs->push_back(archs->at(i - 1));
    }
  }
H
hong19860320 已提交
187 188
#elif defined(TARGET_IOS)
  for (int i = 0; i < cpu_num; ++i) {
T
tensor-tang 已提交
189 190
    archs->push_back(APPLE);
  }
H
hong19860320 已提交
191 192 193 194
#else
  for (int i = 0; i < cpu_num; ++i) {
    archs->push_back(kARMArch_UNKOWN);
  }
T
tensor-tang 已提交
195 196 197 198 199
#endif
}

#ifdef LITE_WITH_LINUX

H
hong19860320 已提交
200
std::string get_cpu_name() {
T
tensor-tang 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  FILE* fp = fopen("/proc/cpuinfo", "rb");
  if (!fp) {
    return "";
  }
  char line[1024];
  while (!feof(fp)) {
    char* s = fgets(line, 1024, fp);
    if (!s) {
      break;
    }
    if (strstr(line, "Hardware") != NULL) {
      fclose(fp);
      return std::string(line);
    }
  }
  fclose(fp);
  return "";
}

H
hong19860320 已提交
220 221 222
void get_cpu_max_min_freq(int cpu_id, int* max_freq, int* min_freq) {
  *max_freq = 0;
  *min_freq = 0;
T
tensor-tang 已提交
223 224 225
  // first try, for all possible cpu
  char path[256];
  snprintf(path, sizeof(path),
H
hong19860320 已提交
226
           "/sys/devices/system/cpu/cpufreq/stats/cpu%d/time_in_state", cpu_id);
T
tensor-tang 已提交
227 228 229 230 231
  FILE* fp = fopen(path, "rb");
  if (!fp) {
    // second try, for online cpu
    snprintf(path, sizeof(path),
             "/sys/devices/system/cpu/cpu%d/cpufreq/stats/time_in_state",
H
hong19860320 已提交
232
             cpu_id);
T
tensor-tang 已提交
233 234 235
    fp = fopen(path, "rb");
    if (!fp) {
      // third try, for online cpu
H
hong19860320 已提交
236
      // get max_freq
T
tensor-tang 已提交
237
      snprintf(path, sizeof(path),
H
hong19860320 已提交
238 239
               "/sys/devices/system/cpu/cpu%d/cpufreq/cpuinfo_max_freq",
               cpu_id);
T
tensor-tang 已提交
240 241
      fp = fopen(path, "rb");
      if (!fp) {
H
hong19860320 已提交
242
        return;
T
tensor-tang 已提交
243
      }
H
hong19860320 已提交
244
      fscanf(fp, "%d", max_freq);
T
tensor-tang 已提交
245
      fclose(fp);
H
hong19860320 已提交
246 247 248 249 250 251 252 253 254 255 256
      // get min_freq
      snprintf(path, sizeof(path),
               "/sys/devices/system/cpu/cpu%d/cpufreq/cpuinfo_min_freq",
               cpu_id);
      fp = fopen(path, "rb");
      if (!fp) {
        return;
      }
      fscanf(fp, "%d", min_freq);
      fclose(fp);
      return;
T
tensor-tang 已提交
257 258
    }
  }
H
hong19860320 已提交
259
  *min_freq = std::numeric_limits<int>::max();
T
tensor-tang 已提交
260
  while (!feof(fp)) {
H
hong19860320 已提交
261 262
    int freq = 0;
    int nscan = fscanf(fp, "%d %*d", &freq);
T
tensor-tang 已提交
263 264 265
    if (nscan != 1) {
      break;
    }
H
hong19860320 已提交
266 267 268 269 270
    if (freq > *max_freq) {
      *max_freq = freq;
    }
    if (freq < *min_freq) {
      *min_freq = freq;
T
tensor-tang 已提交
271 272 273 274 275
    }
  }
  fclose(fp);
}

H
hong19860320 已提交
276 277 278 279 280 281
void sort_cpuid_by_max_freq(const std::vector<int>& max_freqs,
                            std::vector<int>* cpu_ids,
                            std::vector<int>* cluster_ids) {
  int cpu_num = max_freqs.size();
  if (cpu_num == 0) {
    return;
T
tensor-tang 已提交
282
  }
H
hong19860320 已提交
283 284 285 286
  cpu_ids->resize(cpu_num);
  cluster_ids->resize(cpu_num);
  for (int i = 0; i < cpu_num; i++) {
    cpu_ids->at(i) = i;
T
tensor-tang 已提交
287 288 289
  }
  // sort cpuid as big core first
  // simple bubble sort
H
hong19860320 已提交
290 291 292
  for (int i = 0; i < cpu_num; i++) {
    for (int j = i + 1; j < cpu_num; j++) {
      if (max_freqs[i] < max_freqs[j]) {
T
tensor-tang 已提交
293
        // swap
H
hong19860320 已提交
294 295 296
        int tmp = cpu_ids->at(i);
        cpu_ids->at(i) = cpu_ids->at(j);
        cpu_ids->at(j) = tmp;
T
tensor-tang 已提交
297 298 299 300
      }
    }
  }
  // SMP
H
hong19860320 已提交
301 302
  int mid_max_freq =
      (max_freqs[cpu_ids->at(0)] + max_freqs[cpu_ids->at(cpu_num - 1)]) / 2;
T
tensor-tang 已提交
303

H
hong19860320 已提交
304 305 306
  for (int i = 0; i < cpu_num; i++) {
    cpu_ids->at(i) = i;
    if (max_freqs[i] >= mid_max_freq) {
T
tensor-tang 已提交
307 308 309 310 311 312 313
      cluster_ids->at(i) = 0;
    } else {
      cluster_ids->at(i) = 1;
    }
  }
}

H
hong19860320 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
void get_cpu_cache_size(int cpu_id, int* l1_cache_size, int* l2_cache_size,
                        int* l3_cache_size) {
  int max_cache_idx_num = 10;
  *l1_cache_size = DEFAULT_L1_CACHE_SIZE;
  *l2_cache_size = DEFAULT_L2_CACHE_SIZE;
  *l3_cache_size = DEFAULT_L3_CACHE_SIZE;
  for (int i = 0; i < max_cache_idx_num; i++) {
    char path[256];
    snprintf(path, sizeof(path),
             "/sys/devices/system/cpu/cpu%d/cache/index%d/level", cpu_id, i);
    FILE* fp = fopen(path, "rb");
    if (fp) {
      int level = -1;
      fscanf(fp, "%d", &level);
      fclose(fp);
      snprintf(path, sizeof(path),
               "/sys/devices/system/cpu/cpu%d/cache/index%d/size", cpu_id, i);
      fp = fopen(path, "rb");
      if (fp) {
        int size = -1;
        fscanf(fp, "%d", &size);
        fclose(fp);
        if (size >= 0) {
          if (level == 1) {
            *l1_cache_size = size * 1024;
          } else if (level == 2) {
            *l2_cache_size = size * 1024;
          } else if (level == 3) {
            *l3_cache_size = size * 1024;
          }
        }
      }
    }
  }
}

bool check_cpu_online(const std::vector<int>& cpu_ids) {
  if (cpu_ids.size() == 0) {
    return false;
T
tensor-tang 已提交
353 354
  }
  char path[256];
H
hong19860320 已提交
355 356
  bool all_online = true;
  for (int i = 0; i < cpu_ids.size(); ++i) {
T
tensor-tang 已提交
357
    snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%d/online",
H
hong19860320 已提交
358
             cpu_ids[i]);
T
tensor-tang 已提交
359
    FILE* fp = fopen(path, "rb");
H
hong19860320 已提交
360 361 362 363 364 365 366 367 368 369 370
    int is_online = 0;
    if (fp) {
      fscanf(fp, "%d", &is_online);
      fclose(fp);
    } else {
      LOG(ERROR) << "Failed to query the online statue of CPU id:"
                 << cpu_ids[i];
    }
    if (is_online == 0) {
      all_online = false;
      LOG(ERROR) << "CPU id:" << cpu_ids[i] << " is offine";
T
tensor-tang 已提交
371 372
    }
  }
H
hong19860320 已提交
373
  return all_online;
T
tensor-tang 已提交
374 375
}

H
hong19860320 已提交
376
int set_sched_affinity(const std::vector<int>& cpu_ids) {
T
tensor-tang 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
// #define CPU_SETSIZE 1024
// #define __NCPUBITS  (8 * sizeof (unsigned long))
// typedef struct
// {
//    unsigned long __bits[CPU_SETSIZE / __NCPUBITS];
// } cpu_set_t;

// set affinity for thread
#ifdef __GLIBC__
  pid_t pid = syscall(SYS_gettid);
#else
  pid_t pid = gettid();
#endif
  cpu_set_t mask;
  CPU_ZERO(&mask);
H
hong19860320 已提交
392 393
  for (int i = 0; i < cpu_ids.size(); ++i) {
    CPU_SET(cpu_ids[i], &mask);
T
tensor-tang 已提交
394 395 396 397 398
  }
  int syscallret = syscall(__NR_sched_setaffinity, pid, sizeof(mask), &mask);
  if (syscallret) {
    return -1;
  }
H
hong19860320 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
  return 0;
}

bool bind_threads(const std::vector<int> cpu_ids) {
#ifdef ARM_WITH_OMP
  int thread_num = cpu_ids.size();
  omp_set_num_threads(thread_num);
  std::vector<int> ssarets;
  for (int i = 0; i < thread_num; ++i) {
    ssarets.push_back(0);
  }
#pragma omp parallel for
  for (int i = 0; i < thread_num; i++) {
    ssarets[i] = set_sched_affinity(cpu_ids);
  }
  for (int i = 0; i < thread_num; i++) {
    if (ssarets[i] != 0) {
      LOG(ERROR) << "Set cpu affinity failed, core id: " << cpu_ids[i];
      return false;
    }
  }
#else   // ARM_WITH_OMP
  std::vector<int> first_cpu_id;
  first_cpu_id.push_back(cpu_ids[0]);
  int ssaret = set_sched_affinity(first_cpu_id);
  if (ssaret != 0) {
    LOG(ERROR) << "Set cpu affinity failed, core id: " << cpu_ids[0];
    return false;
  }
#endif  // ARM_WITH_OMP
}

#endif  // LITE_WITH_LINUX

// cache_id : 0 -> L1, 1 -> L2, 2 -> L3
void DeviceInfo::SetCacheInfo(int cache_id, int argc, ...) {
  va_list arg_ptr;
  va_start(arg_ptr, argc);
  std::vector<int>* cache;
  switch (cache_id) {
    case 0:
      cache = &L1_cache_;
      break;
    case 1:
      cache = &L2_cache_;
      break;
    case 2:
      cache = &L3_cache_;
      break;
    default:
      break;
  }
  cache->resize(core_num_);
  if (argc == 1) {
    int cache_size = va_arg(arg_ptr, int);
    for (int i = 0; i < core_num_; ++i) {
      (*cache)[i] = cache_size;
    }
  } else {
    int big_core_num = big_core_ids_.size();
    int little_core_num = little_core_ids_.size();
    int big_core_cache_size = va_arg(arg_ptr, int);
    int little_core_cache_size = va_arg(arg_ptr, int);
    for (int i = 0; i < big_core_num; ++i) {
      (*cache)[big_core_ids_[i]] = big_core_cache_size;
    }
    for (int i = 0; i < little_core_num; ++i) {
      (*cache)[little_core_ids_[i]] = little_core_cache_size;
    }
  }
  va_end(arg_ptr);
}

void DeviceInfo::SetArchInfo(int argc, ...) {
  va_list arg_ptr;
  va_start(arg_ptr, argc);
  archs_.resize(core_num_);
  if (argc == 1) {
    ARMArch arch = (ARMArch)va_arg(arg_ptr, int);
    for (int i = 0; i < core_num_; ++i) {
      archs_[i] = arch;
    }
  } else {
    ARMArch big_core_arch = (ARMArch)va_arg(arg_ptr, int);
    ARMArch little_core_arch = (ARMArch)va_arg(arg_ptr, int);
    int big_core_num = big_core_ids_.size();
    int little_core_num = little_core_ids_.size();
    for (int i = 0; i < big_core_num; ++i) {
      archs_[big_core_ids_[i]] = big_core_arch;
    }
    for (int i = 0; i < little_core_num; ++i) {
      archs_[little_core_ids_[i]] = little_core_arch;
    }
  }
  va_end(arg_ptr);
}

bool DeviceInfo::SetCPUInfoByName() {
  /* Snapdragon */
  if (dev_name_.find("SM8150") != std::string::npos) {  // 855
    core_num_ = 8;
    core_ids_ = {0, 1, 2, 3, 4, 5, 6, 7};
    big_core_ids_ = {4, 5, 6, 7};
    little_core_ids_ = {0, 1, 2, 3};
    cluster_ids_ = {1, 1, 1, 1, 0, 0, 0, 0};
    SetArchInfo(2, kA76, kA55);
    SetCacheInfo(0, 2, 64 * 1024, 32 * 1024);
    SetCacheInfo(1, 2, 256 * 1024, 128 * 1024);
    SetCacheInfo(2, 1, 2048 * 1024);
    return true;
  } else if (dev_name_.find("SDM845") != std::string::npos) {  // 845
    core_num_ = 8;
    core_ids_ = {0, 1, 2, 3, 4, 5, 6, 7};
    big_core_ids_ = {4, 5, 6, 7};
    little_core_ids_ = {0, 1, 2, 3};
    cluster_ids_ = {1, 1, 1, 1, 0, 0, 0, 0};
    SetArchInfo(2, kA75, kA55);
    SetCacheInfo(0, 2, 64 * 1024, 32 * 1024);
    SetCacheInfo(1, 2, 256 * 1024, 128 * 1024);
    SetCacheInfo(2, 1, 2048 * 1024);
    return true;
  } else if (dev_name_.find("SDM710") != std::string::npos) {  // 710
    core_num_ = 8;
    core_ids_ = {0, 1, 2, 3, 4, 5, 6, 7};
    big_core_ids_ = {6, 7};
    little_core_ids_ = {0, 1, 2, 3, 4, 5};
    cluster_ids_ = {1, 1, 1, 1, 1, 1, 0, 0};
    SetArchInfo(2, kA75, kA55);
    SetCacheInfo(0, 2, 64 * 1024, 32 * 1024);
    SetCacheInfo(1, 2, 256 * 1024, 128 * 1024);
    SetCacheInfo(2, 1, 1024 * 1024);
    return true;
  } else if (dev_name_.find("MSM8998") != std::string::npos) {  // 835
    core_num_ = 8;
    core_ids_ = {0, 1, 2, 3, 4, 5, 6, 7};
    big_core_ids_ = {4, 5, 6, 7};
    little_core_ids_ = {0, 1, 2, 3};
    cluster_ids_ = {1, 1, 1, 1, 0, 0, 0, 0};
    SetArchInfo(2, kA73, kA53);
    SetCacheInfo(0, 2, 64 * 1024, 32 * 1024);
    SetCacheInfo(1, 2, 1024 * 1024,
                 /*real cache size is 2M, while that will get bad performace
                    on conv3x3s1 or gemm, set to 1M or 512K*/
                 1024 * 1024);
    return true;
  } else if (dev_name_.find("MSM8996") != std::string::npos) {  // 820
    core_num_ = 4;
    core_ids_ = {0, 1, 2, 3};
    big_core_ids_ = {2, 3};
    little_core_ids_ = {0, 1};
    cluster_ids_ = {1, 1, 0, 0};
    SetArchInfo(1, kA72);
    SetCacheInfo(0, 1, 24 * 1024);
    SetCacheInfo(1, 2, 1024 * 1024, 512 * 1024);
    return true;
  } else if (dev_name_.find("SDM660") != std::string::npos ||
             dev_name_.find("SDM636") != std::string::npos) {  // 660, 636
    core_num_ = 8;
    core_ids_ = {0, 1, 2, 3, 4, 5, 6, 7};
    big_core_ids_ = {4, 5, 6, 7};
    little_core_ids_ = {0, 1, 2, 3};
    cluster_ids_ = {1, 1, 1, 1, 0, 0, 0, 0};
    SetArchInfo(1, kA73);
    SetCacheInfo(0, 2, 64 * 1024, 32 * 1024);
    SetCacheInfo(1, 1, 1024 * 1024);
    return true;
  } else if (dev_name_.find("MSM8976") != std::string::npos) {  // 652,653
    core_num_ = 8;
    core_ids_ = {0, 1, 2, 3, 4, 5, 6, 7};
    big_core_ids_ = {4, 5, 6, 7};
    little_core_ids_ = {0, 1, 2, 3};
    cluster_ids_ = {1, 1, 1, 1, 0, 0, 0, 0};
    SetArchInfo(2, kA72, kA53);
    SetCacheInfo(0, 1, 32 * 1024);
    SetCacheInfo(1, 2, 1024 * 1024, 512 * 1024);
    return true;
  } else if (dev_name_.find("MSM8953") != std::string::npos) {  // 625
    core_num_ = 8;
    core_ids_ = {0, 1, 2, 3, 4, 5, 6, 7};
    big_core_ids_ = {0, 1, 2, 3, 4, 5, 6, 7};
    little_core_ids_ = {};
    cluster_ids_ = {0, 0, 0, 0, 0, 0, 0, 0};
    SetArchInfo(1, kA53);
    SetCacheInfo(0, 1, 32 * 1024);
    SetCacheInfo(1, 1, 1024 * 1024);
    return true;
  } else if (dev_name_.find("MSM8939") != std::string::npos) {  // 615
    core_num_ = 8;
    core_ids_ = {0, 1, 2, 3, 4, 5, 6, 7};
    big_core_ids_ = {0, 1, 2, 3};
    little_core_ids_ = {4, 5, 6, 7};
    cluster_ids_ = {0, 0, 0, 0, 1, 1, 1, 1};
    SetArchInfo(1, kA53);
    SetCacheInfo(0, 1, 32 * 1024);
    SetCacheInfo(1, 2, 512 * 1024, 256 * 1024);
    return true;
    /* MediaTek */
  } else if (dev_name_.find("MT6797") !=
             std::string::npos) {  // X20/X23/X25/X27
    core_num_ = 10;
    core_ids_ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
    big_core_ids_ = {8, 9};
    little_core_ids_ = {0, 1, 2, 3, 4, 5, 6, 7};
    cluster_ids_ = {1, 1, 1, 1, 1, 1, 1, 1, 0, 0};
    SetArchInfo(2, kA72, kA53);
    SetCacheInfo(0, 1, 32 * 1024);
    SetCacheInfo(1, 2, 1024 * 1024, 512 * 1024);
    return true;
  } else if (dev_name_.find("MT6799") != std::string::npos) {  // X30
    core_num_ = 10;
    core_ids_ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
    big_core_ids_ = {8, 9};
    little_core_ids_ = {0, 1, 2, 3, 4, 5, 6, 7};
    cluster_ids_ = {1, 1, 1, 1, 1, 1, 1, 1, 0, 0};
    SetArchInfo(2, kA73, kA53);
    return true;
  } else if (dev_name_.find("MT6795") != std::string::npos ||
             dev_name_.find("MT6762") != std::string::npos ||
             dev_name_.find("MT6755T") != std::string::npos ||
             dev_name_.find("MT6755S") != std::string::npos ||
             dev_name_.find("MT6753") != std::string::npos ||
             dev_name_.find("MT6752") != std::string::npos ||
             dev_name_.find("MT6750") != std::string::npos) {
    // X10, P22, P15/P18, MT6753, MT6752/MT6752M, MT6750
    core_num_ = 8;
    core_ids_ = {0, 1, 2, 3, 4, 5, 6, 7};
    big_core_ids_ = {0, 1, 2, 3, 4, 5, 6, 7};
    little_core_ids_ = {};
    cluster_ids_ = {0, 0, 0, 0, 0, 0, 0, 0};
    SetArchInfo(1, kA53);
    return true;
  } else if (dev_name_.find("MT6758") != std::string::npos ||
             dev_name_.find("MT6757") != std::string::npos ||
             dev_name_.find("MT6763") != std::string::npos ||
             dev_name_.find("MT6755M") != std::string::npos ||
             dev_name_.find("MT6755") !=
                 std::string::npos) {  // P30, P20/P25, P23, P10
    core_num_ = 8;
    core_ids_ = {0, 1, 2, 3, 4, 5, 6, 7};
    big_core_ids_ = {4, 5, 6, 7};
    little_core_ids_ = {0, 1, 2, 3};
    cluster_ids_ = {1, 1, 1, 1, 0, 0, 0, 0};
    SetArchInfo(1, kA53);
    return true;
  } else if (dev_name_.find("MT6771") != std::string::npos) {  // P60
    core_num_ = 8;
    core_ids_ = {0, 1, 2, 3, 4, 5, 6, 7};
    big_core_ids_ = {4, 5, 6, 7};
    little_core_ids_ = {0, 1, 2, 3};
    cluster_ids_ = {1, 1, 1, 1, 0, 0, 0, 0};
    SetArchInfo(2, kA73, kA53);
    return true;
  } else if (dev_name_.find("MT6765") != std::string::npos ||
             dev_name_.find("MT6739") != std::string::npos ||
             dev_name_.find("MT6738") != std::string::npos ||
             dev_name_.find("MT6737") !=
                 std::string::npos) {  // A22, MT6739, MT6738, MT6767
    core_num_ = 4;
    core_ids_ = {0, 1, 2, 3};
    big_core_ids_ = {0, 1, 2, 3};
    little_core_ids_ = {};
    cluster_ids_ = {0, 0, 0, 0};
    SetArchInfo(1, kA53);
    return true;
  }
  return false;
}

void DeviceInfo::SetCPUInfoByProb() {
#ifdef LITE_WITH_LINUX
  // get big.LITTLE cores by sorting CPU frequency
  sort_cpuid_by_max_freq(max_freqs_, &core_ids_, &cluster_ids_);
  big_core_ids_.clear();
  little_core_ids_.clear();
  for (int i = 0; i < cluster_ids_.size(); ++i) {
    if (cluster_ids_[i] == 0) {
      big_core_ids_.push_back(core_ids_[i]);
    } else {
      little_core_ids_.push_back(core_ids_[i]);
    }
  }
  // get l1, l2, l3 cache size for each core
  for (int i = 0; i < core_num_; i++) {
    get_cpu_cache_size(i, &(L1_cache_[i]), &(L2_cache_[i]), &(L3_cache_[i]));
  }
#endif  // LITE_WITH_LINUX
}

void DeviceInfo::RequestPowerFullMode(const int thread_num) {
  int big_core_size = big_core_ids_.size();
  int little_core_size = little_core_ids_.size();
  active_ids_.clear();
  for (int i = 0; i < thread_num; ++i) {
    if (i < big_core_size) {
      active_ids_.push_back(big_core_ids_[i]);
    } else if (i < big_core_size + little_core_size) {
      active_ids_.push_back(little_core_ids_[i - big_core_size]);
    }
  }
  mode_ = LITE_POWER_FULL;
}

void DeviceInfo::RequestPowerHighMode(const int thread_num) {
  int big_core_size = big_core_ids_.size();
  int little_core_size = little_core_ids_.size();
  active_ids_.clear();
  if (big_core_size > 0) {
    mode_ = LITE_POWER_HIGH;
    if (thread_num > big_core_size) {
      LOG(ERROR) << "Request thread num: " << thread_num
                 << ", exceed the big cores size: " << big_core_size
                 << ", truncate thread num to " << big_core_size;
      active_ids_ = big_core_ids_;
    } else {
      for (int i = 0; i < thread_num; ++i) {
        active_ids_.push_back(big_core_ids_[i]);
      }
    }
  } else {
    mode_ = LITE_POWER_LOW;
    LOG(ERROR) << "HIGH POWER MODE is not support, switch to little cores.";
    if (thread_num > little_core_size) {
      active_ids_ = little_core_ids_;
    } else {
      for (int i = 0; i < thread_num; ++i) {
        active_ids_.push_back(little_core_ids_[i]);
      }
    }
  }
}

void DeviceInfo::RequestPowerLowMode(const int thread_num) {
  int big_core_size = big_core_ids_.size();
  int little_core_size = little_core_ids_.size();
  active_ids_.clear();
  if (little_core_size > 0) {
    mode_ = LITE_POWER_LOW;
    if (thread_num > little_core_size) {
      LOG(WARNING) << "Request thread num: " << thread_num
                   << ", exceed the little cores size: " << little_core_size
                   << ", truncate thread num to " << little_core_size;
      active_ids_ = little_core_ids_;
    } else {
      for (int i = 0; i < thread_num; i++) {
        active_ids_.push_back(little_core_ids_[i]);
      }
    }
  } else {
    mode_ = LITE_POWER_HIGH;
    LOG(WARNING) << "LOW POWER MODE is not support, switch to big cores";
    if (thread_num > big_core_size) {
      active_ids_ = big_core_ids_;
    } else {
      for (int i = 0; i < thread_num; i++) {
        active_ids_.push_back(big_core_ids_[i]);
      }
    }
  }
}
T
tensor-tang 已提交
758

H
hong19860320 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
void DeviceInfo::RequestPowerNoBindMode(const int thread_num) {
  active_ids_.clear();
  for (int i = 0; i < thread_num; i++) {
    active_ids_.push_back(0);
  }
  mode_ = LITE_POWER_NO_BIND;
}

void DeviceInfo::RequestPowerRandHighMode(const int shift_num,
                                          const int thread_num) {
  int big_core_size = big_core_ids_.size();
  int little_core_size = little_core_ids_.size();
  if (big_core_size > 0) {
    mode_ = LITE_POWER_RAND_HIGH;
    if (thread_num > big_core_size) {
      LOG(WARNING) << "Request thread num: " << thread_num
                   << ", exceed the big cores size: " << big_core_size
                   << ", truncate thread num to " << big_core_size;
      active_ids_ = big_core_ids_;
    } else {
      for (int i = 0; i < thread_num; ++i) {
        active_ids_.push_back(big_core_ids_[(i + shift_num) % big_core_size]);
      }
    }
  } else {
    mode_ = LITE_POWER_LOW;
    LOG(WARNING) << "HIGH POWER MODE is not support, switch to little cores.";
    if (thread_num > little_core_size) {
      active_ids_ = little_core_ids_;
    } else {
      for (int i = 0; i < thread_num; ++i) {
        active_ids_.push_back(little_core_ids_[i]);
      }
    }
  }
}

void DeviceInfo::RequestPowerRandLowMode(const int shift_num,
                                         const int thread_num) {
  int big_core_size = big_core_ids_.size();
  int little_core_size = little_core_ids_.size();
  active_ids_.clear();
  if (little_core_size > 0) {
    mode_ = LITE_POWER_RAND_LOW;
    if (thread_num > little_core_size) {
      LOG(WARNING) << "Request thread num: " << thread_num
                   << ", exceed the little cores size: " << little_core_size
                   << ", truncate thread num to " << little_core_size;
      active_ids_ = little_core_ids_;
    } else {
      for (int i = 0; i < thread_num; ++i) {
        active_ids_.push_back(
            little_core_ids_[(i + shift_num) % little_core_size]);
      }
    }
  } else {
    mode_ = LITE_POWER_HIGH;
    LOG(WARNING) << "LOW POWER MODE is not support, switch to big cores.";
    if (thread_num > big_core_size) {
      active_ids_ = big_core_ids_;
    } else {
      for (int i = 0; i < thread_num; ++i) {
        active_ids_.push_back(big_core_ids_[i]);
      }
    }
  }
}

int DeviceInfo::Setup() {
  core_num_ = get_cpu_num();
  mem_size_ = get_mem_size();
  get_cpu_arch(&archs_, core_num_);
  // set defalut CPU info
  SetCacheInfo(0, DEFAULT_L1_CACHE_SIZE);
  SetCacheInfo(1, DEFAULT_L2_CACHE_SIZE);
  SetCacheInfo(2, DEFAULT_L3_CACHE_SIZE);
#ifdef LITE_WITH_LINUX
  // get max&min freq
  max_freqs_.resize(core_num_);
  min_freqs_.resize(core_num_);
  for (int i = 0; i < core_num_; ++i) {
    int max_freq, min_freq;
    get_cpu_max_min_freq(i, &max_freq, &min_freq);
    max_freqs_[i] = max_freq / 1000;
    min_freqs_[i] = min_freq / 1000;
  }
  // get cache size and big.LITTLE core ids
  dev_name_ = get_cpu_name();
  if (!SetCPUInfoByName()) {
    SetCPUInfoByProb();
  }
  // output info
  LOG(INFO) << "ARM multiprocessors name: " << dev_name_;
  LOG(INFO) << "ARM multiprocessors number: " << core_num_;
  for (int i = 0; i < core_num_; ++i) {
    LOG(INFO) << "ARM multiprocessors ID: " << core_ids_[i]
              << ", max freq: " << max_freqs_[i]
              << ", min freq: " << min_freqs_[i]
              << ", cluster ID: " << cluster_ids_[core_ids_[i]]
              << ", CPU ARCH: A" << archs_[i];
  }
  LOG(INFO) << "L1 DataCache size is: ";
  for (int i = 0; i < core_num_; ++i) {
    LOG(INFO) << L1_cache_[i] / 1024 << " KB";
  }
  LOG(INFO) << "L2 Cache size is: ";
  for (int i = 0; i < core_num_; ++i) {
    LOG(INFO) << L2_cache_[i] / 1024 << " KB";
  }
  LOG(INFO) << "Total memory: " << mem_size_ << "KB";
#endif
  // set default run mode
  SetRunMode(LITE_POWER_NO_BIND, 1);  // use single thread by default
T
tensor-tang 已提交
872 873 874
  return 0;
}

H
hong19860320 已提交
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
void DeviceInfo::SetRunMode(PowerMode mode, int thread_num) {
#ifdef ARM_WITH_OMP
  thread_num = std::min(thread_num, core_num_);
#else
  thread_num = 1;  // force thread_num to 1 if OpenMP is disabled
#endif
#ifdef LITE_WITH_LINUX
  int big_core_size = big_core_ids_.size();
  int little_core_size = little_core_ids_.size();
  int big_little_core_size = big_core_size + little_core_size;
  thread_num = std::min(thread_num, big_little_core_size);
  count_++;
  int shift_num = (count_ / 10) % big_core_size;
  switch (mode) {
    case LITE_POWER_FULL:
      RequestPowerFullMode(thread_num);
      break;
    case LITE_POWER_HIGH:
      RequestPowerHighMode(thread_num);
      break;
    case LITE_POWER_LOW:
      RequestPowerLowMode(thread_num);
      break;
    case LITE_POWER_NO_BIND:
      RequestPowerNoBindMode(thread_num);
      break;
    case LITE_POWER_RAND_HIGH:
      RequestPowerRandHighMode(shift_num, thread_num);
      break;
    case LITE_POWER_RAND_LOW:
      RequestPowerRandLowMode(shift_num, thread_num);
      break;
    default:
      LOG(FATAL) << "Unsupported power mode: " << mode;
      break;
  }
  if (active_ids_.size() == 0) {
    active_ids_.push_back(0);
  }
#ifdef ARM_WITH_OMP
  omp_set_num_threads(active_ids_.size());
#endif
  if (mode_ != LITE_POWER_NO_BIND) {
    if (check_cpu_online(active_ids_)) {
      bind_threads(active_ids_);
    } else {
      LOG(WARNING) << "Some cores are offline, switch to NO BIND MODE";
      mode_ = LITE_POWER_NO_BIND;
    }
  }
#else  // LITE_WITH_LINUX
  // only LITE_POWER_NO_BIND is supported in other OS
  RequestPowerNoBindMode(thread_num);
#ifdef ARM_WITH_OMP
  omp_set_num_threads(active_ids_.size());
#endif
T
tensor-tang 已提交
931
#endif  // LITE_WITH_LINUX
H
hong19860320 已提交
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
  //! alloc memory for sgemm in this context
  workspace_.Resize(
      {static_cast<int64_t>(L2_cache_[active_ids_[0]] / sizeof(float))});
  arch_ = archs_[active_ids_[0]];
}

void DeviceInfo::SetCache(int l1size, int l2size, int l3size) {
  SetCacheInfo(0, l1size);
  SetCacheInfo(1, l2size);
  SetCacheInfo(2, l3size);
  workspace_.Resize({2 * (l1size + l2size)});
}

bool DeviceInfo::ExtendWorkspace(DDimLite dims) {
  auto count = dims.product();
  auto old = workspace_.dims();
  if (count == old.product()) {
    return false;
  }
  workspace_.Resize({static_cast<int64_t>(
      count + L2_cache_[active_ids_[0]] / sizeof(float))});
  return true;
}
T
tensor-tang 已提交
955 956 957 958 959

#endif  // LITE_WITH_ARM

}  // namespace lite
}  // namespace paddle