softmax_with_cross_entropy_op.cc 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/softmax_with_cross_entropy_op.h"

namespace paddle {
namespace operators {

class SoftmaxWithCrossEntropyOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
23 24
  SoftmaxWithCrossEntropyOpMaker(framework::OpProto* proto,
                                 framework::OpAttrChecker* op_checker)
25
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
caoying03 已提交
26
    AddInput("Logits",
27
             "(Tensor, default: Tensor<float>), The unscaled log probabilities "
C
caoying03 已提交
28 29
             "which is a 2-D tensor with shape [N x K]. N is the batch_size, "
             "and K is the class number.")
30
        .NotInGradient();
C
caoying03 已提交
31 32
    AddInput(
        "Label",
33 34 35 36
        "(Tensor, default: Tensor<int>), The ground truth which is a 2-D "
        "tensor. "
        "If softLable is set to 0, Label is a Tensor<int> with shape [N x 1]. "
        "If softLable is set to 1, Label is a Tensor<float/double> "
C
caoying03 已提交
37 38 39
        "with shape [N x K].");
    AddOutput(
        "Softmax",
40
        "(Tensor, default: Tensor<float>), A 2-D tensor with shape [N x K]. "
C
caoying03 已提交
41 42
        "The outputs value of softmax activation by given the input batch, "
        "which will be used in backward calculation.")
C
caoying03 已提交
43
        .AsIntermediate();
C
caoying03 已提交
44
    AddOutput("Loss",
45
              "(Tensor, default: Tensor<float>), A 2-D tensor. The cross "
C
caoying03 已提交
46
              "entropy loss with shape [N x 1].");
C
caoying03 已提交
47 48 49 50 51
    AddAttr<bool>(
        "softLabel",
        "(bool, default: false), A flag to indicate whether to interpretate "
        "the given labels as soft labels.")
        .SetDefault(false);
52 53 54 55 56 57 58 59 60 61 62 63 64 65
    AddComment(R"DOC(
Cross entropy loss with softmax are used as the output layer extensively. This
operator computes the softmax normalized values for each row of the input
tensor, after which cross-entropy loss is then computed. This provides a more
numerically stable gradient.

Because this operators performs a softmax on logits internally, it expects
unscaled logits. Please do not call this op with the output of softmax operator,
which will produce incorrect results.

This operators expects mutually exclusive hard labels, each sample in a batch
is in exactly one class with probabilities 1. Each sample in the batch with one
and only one label.

C
caoying03 已提交
66
Equation:
67

C
caoying03 已提交
68
1) hard label (one-hot label)
69

C
caoying03 已提交
70 71 72 73 74 75 76
Loss_j = -\text{Logit}_{Label_j} + \log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right), j = 1, ..., K

2) soft label (a distribution over all classes)

Loss_j = -\sum_{i=0}^{K}\text{Label}_i\left(\text{Logit}_i-\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right), j = 1,...,K

)DOC");
77 78 79 80 81 82 83 84
  }
};

class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Q
qiaolongfei 已提交
85 86 87 88 89 90 91 92 93 94 95
  void InferShape(framework::InferShapeContextBase* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Logits"),
                   "Input(Logits) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("Softmax"),
                   "Output(Softmax) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Loss"), "Output(Loss) should be not null.");

    auto logits_dims = ctx->GetInputDim("Logits");
    auto labels_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
96
    PADDLE_ENFORCE_EQ(
Q
qiaolongfei 已提交
97
        logits_dims.size(), 2UL,
98
        "The input of softmax_with_cross_entropy should be a 2-D tensor.");
Q
qiaolongfei 已提交
99
    PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
C
caoying03 已提交
100
                      "The labels should be a 2-D tensor.");
101

Q
qiaolongfei 已提交
102 103
    if (ctx->Attrs().Get<bool>("softLabel")) {
      PADDLE_ENFORCE_EQ(logits_dims[1], labels_dims[1],
104 105 106
                        "If Attr(softLabel) == true, the 2nd dimension of "
                        "Input(X) and Input(Label) should be equal.");
    } else {
Q
qiaolongfei 已提交
107
      PADDLE_ENFORCE_EQ(labels_dims[1], 1UL,
108 109 110 111
                        "If Attr(softLabel) == false, the 2nd dimension of "
                        "Input(Label) should be 1.");
    }

Q
qiaolongfei 已提交
112 113
    ctx->SetOutputDim("Softmax", logits_dims);
    ctx->SetOutputDim("Loss", {logits_dims[0], 1});
114

Q
qiaolongfei 已提交
115 116
    ctx->ShareLoD("Logits", /*->*/ "Softmax");
    ctx->ShareLoD("Logits", /*->*/ "Loss");
C
caoying03 已提交
117 118 119 120 121 122 123 124
  }
};

class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Q
qiaolongfei 已提交
125 126 127 128 129 130 131 132 133 134 135 136
  void InferShape(framework::InferShapeContextBase* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@Grad) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Softmax"),
                   "Input(Softmax) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")),
                   "Output(Logits@Grad) should be not null.");

    auto softmax_dims = ctx->GetInputDim("Softmax");
    auto labels_dims = ctx->GetInputDim("Label");
    PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
C
caoying03 已提交
137
                      "The labels should be a 2-D tensor.");
138

Q
qiaolongfei 已提交
139 140
    if (ctx->Attrs().Get<bool>("softLabel")) {
      PADDLE_ENFORCE_EQ(softmax_dims[1], labels_dims[1],
141 142 143
                        "When Attr(softLabel) == true, the 2nd dimension of "
                        "Input(X) and Input(Label) should be equal.");
    } else {
Q
qiaolongfei 已提交
144
      PADDLE_ENFORCE_EQ(labels_dims[1], 1UL,
145 146 147
                        "When Attr(softLabel) == false, the 2nd dimension of "
                        "Input(Label) should be 1.");
    }
C
caoying03 已提交
148

Q
qiaolongfei 已提交
149 150
    ctx->SetOutputDim(framework::GradVarName("Logits"),
                      ctx->GetInputDim("Softmax"));
151 152 153 154 155 156 157 158 159 160 161 162
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyOp,
            ops::SoftmaxWithCrossEntropyOpMaker,
            softmax_with_cross_entropy_grad,
            ops::SoftmaxWithCrossEntropyOpGrad);
163 164 165 166
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy,
                       ops::SoftmaxWithCrossEntropyKernel<float>);
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy_grad,
                       ops::SoftmaxWithCrossEntropyGradKernel<float>);