conll05.py 9.6 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dangqingqing 已提交
14
"""
Q
qijun 已提交
15
Conll05 dataset.
Q
qijun 已提交
16 17 18 19 20
Paddle semantic role labeling Book and demo use this dataset as an example.
Because Conll05 is not free in public, the default downloaded URL is test set
of Conll05 (which is public). Users can change URL and MD5 to their Conll
dataset. And a pre-trained word vector model based on Wikipedia corpus is used
to initialize SRL model.
D
dangqingqing 已提交
21 22
"""

23 24
from __future__ import print_function

Q
qijun 已提交
25 26 27
import tarfile
import gzip
import itertools
28
import paddle.dataset.common
M
minqiyang 已提交
29
import paddle.compat as cpt
30
import paddle.utils.deprecated as deprecated
M
minqiyang 已提交
31
from six.moves import zip, range
Q
qijun 已提交
32

33 34
__all__ = []

M
minqiyang 已提交
35
DATA_URL = 'http://paddlemodels.bj.bcebos.com/conll05st/conll05st-tests.tar.gz'
D
dangqingqing 已提交
36
DATA_MD5 = '387719152ae52d60422c016e92a742fc'
T
typhoonzero 已提交
37
WORDDICT_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2FwordDict.txt'
D
dangqingqing 已提交
38
WORDDICT_MD5 = 'ea7fb7d4c75cc6254716f0177a506baa'
T
typhoonzero 已提交
39
VERBDICT_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2FverbDict.txt'
D
dangqingqing 已提交
40
VERBDICT_MD5 = '0d2977293bbb6cbefab5b0f97db1e77c'
T
typhoonzero 已提交
41
TRGDICT_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2FtargetDict.txt'
D
dangqingqing 已提交
42
TRGDICT_MD5 = 'd8c7f03ceb5fc2e5a0fa7503a4353751'
T
typhoonzero 已提交
43
EMB_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2Femb'
D
dangqingqing 已提交
44 45 46 47 48
EMB_MD5 = 'bf436eb0faa1f6f9103017f8be57cdb7'

UNK_IDX = 0


J
jiaozhenyu 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
def load_label_dict(filename):
    d = dict()
    tag_dict = set()
    with open(filename, 'r') as f:
        for i, line in enumerate(f):
            line = line.strip()
            if line.startswith("B-"):
                tag_dict.add(line[2:])
            elif line.startswith("I-"):
                tag_dict.add(line[2:])
        index = 0
        for tag in tag_dict:
            d["B-" + tag] = index
            index += 1
            d["I-" + tag] = index
            index += 1
        d["O"] = index
    return d


D
dangqingqing 已提交
69 70 71 72 73 74 75 76 77 78
def load_dict(filename):
    d = dict()
    with open(filename, 'r') as f:
        for i, line in enumerate(f):
            d[line.strip()] = i
    return d


def corpus_reader(data_path, words_name, props_name):
    """
79
    Read one corpus. It returns an iterator. Each element of
D
dangqingqing 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    this iterator is a tuple including sentence and labels. The sentence is
    consist of a list of word IDs. The labels include a list of label IDs.
    :return: a iterator of data.
    :rtype: iterator
    """

    def reader():
        tf = tarfile.open(data_path)
        wf = tf.extractfile(words_name)
        pf = tf.extractfile(props_name)
        with gzip.GzipFile(fileobj=wf) as words_file, gzip.GzipFile(
                fileobj=pf) as props_file:
            sentences = []
            labels = []
            one_seg = []
95
            for word, label in zip(words_file, props_file):
M
minqiyang 已提交
96 97
                word = cpt.to_text(word.strip())
                label = cpt.to_text(label.strip().split())
D
dangqingqing 已提交
98 99

                if len(label) == 0:  # end of sentence
100
                    for i in range(len(one_seg[0])):
D
dangqingqing 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
                        a_kind_lable = [x[i] for x in one_seg]
                        labels.append(a_kind_lable)

                    if len(labels) >= 1:
                        verb_list = []
                        for x in labels[0]:
                            if x != '-':
                                verb_list.append(x)

                        for i, lbl in enumerate(labels[1:]):
                            cur_tag = 'O'
                            is_in_bracket = False
                            lbl_seq = []
                            verb_word = ''
                            for l in lbl:
                                if l == '*' and is_in_bracket == False:
                                    lbl_seq.append('O')
                                elif l == '*' and is_in_bracket == True:
                                    lbl_seq.append('I-' + cur_tag)
                                elif l == '*)':
                                    lbl_seq.append('I-' + cur_tag)
                                    is_in_bracket = False
                                elif l.find('(') != -1 and l.find(')') != -1:
                                    cur_tag = l[1:l.find('*')]
                                    lbl_seq.append('B-' + cur_tag)
                                    is_in_bracket = False
                                elif l.find('(') != -1 and l.find(')') == -1:
                                    cur_tag = l[1:l.find('*')]
                                    lbl_seq.append('B-' + cur_tag)
                                    is_in_bracket = True
                                else:
132 133
                                    raise RuntimeError('Unexpected label: %s' %
                                                       l)
D
dangqingqing 已提交
134 135 136 137 138 139 140 141 142 143

                            yield sentences, verb_list[i], lbl_seq

                    sentences = []
                    labels = []
                    one_seg = []
                else:
                    sentences.append(word)
                    one_seg.append(label)

144 145 146 147
        pf.close()
        wf.close()
        tf.close()

D
dangqingqing 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    return reader


def reader_creator(corpus_reader,
                   word_dict=None,
                   predicate_dict=None,
                   label_dict=None):
    def reader():
        for sentence, predicate, labels in corpus_reader():

            sen_len = len(sentence)

            verb_index = labels.index('B-V')
            mark = [0] * len(labels)
            if verb_index > 0:
                mark[verb_index - 1] = 1
                ctx_n1 = sentence[verb_index - 1]
            else:
                ctx_n1 = 'bos'

            if verb_index > 1:
                mark[verb_index - 2] = 1
                ctx_n2 = sentence[verb_index - 2]
            else:
                ctx_n2 = 'bos'

            mark[verb_index] = 1
            ctx_0 = sentence[verb_index]

            if verb_index < len(labels) - 1:
                mark[verb_index + 1] = 1
                ctx_p1 = sentence[verb_index + 1]
            else:
                ctx_p1 = 'eos'

            if verb_index < len(labels) - 2:
                mark[verb_index + 2] = 1
                ctx_p2 = sentence[verb_index + 2]
            else:
                ctx_p2 = 'eos'

            word_idx = [word_dict.get(w, UNK_IDX) for w in sentence]

            ctx_n2_idx = [word_dict.get(ctx_n2, UNK_IDX)] * sen_len
            ctx_n1_idx = [word_dict.get(ctx_n1, UNK_IDX)] * sen_len
            ctx_0_idx = [word_dict.get(ctx_0, UNK_IDX)] * sen_len
            ctx_p1_idx = [word_dict.get(ctx_p1, UNK_IDX)] * sen_len
            ctx_p2_idx = [word_dict.get(ctx_p2, UNK_IDX)] * sen_len

D
dangqingqing 已提交
197
            pred_idx = [predicate_dict.get(predicate)] * sen_len
D
dangqingqing 已提交
198 199
            label_idx = [label_dict.get(w) for w in labels]

D
dangqingqing 已提交
200 201
            yield word_idx, ctx_n2_idx, ctx_n1_idx, \
              ctx_0_idx, ctx_p1_idx, ctx_p2_idx, pred_idx, mark, label_idx
D
dangqingqing 已提交
202

D
update  
dangqingqing 已提交
203
    return reader
D
dangqingqing 已提交
204 205


206 207 208
@deprecated(
    since="2.0.0",
    update_to="paddle.text.datasets.Conll05st",
209
    level=1,
210
    reason="Please use new dataset API which supports paddle.io.DataLoader")
D
dangqingqing 已提交
211
def get_dict():
Q
qijun 已提交
212 213 214
    """
    Get the word, verb and label dictionary of Wikipedia corpus.
    """
R
root 已提交
215
    word_dict = load_dict(
216
        paddle.dataset.common.download(WORDDICT_URL, 'conll05st', WORDDICT_MD5))
R
root 已提交
217
    verb_dict = load_dict(
218
        paddle.dataset.common.download(VERBDICT_URL, 'conll05st', VERBDICT_MD5))
J
jiaozhenyu 已提交
219
    label_dict = load_label_dict(
220
        paddle.dataset.common.download(TRGDICT_URL, 'conll05st', TRGDICT_MD5))
D
dangqingqing 已提交
221 222 223
    return word_dict, verb_dict, label_dict


224 225 226
@deprecated(
    since="2.0.0",
    update_to="paddle.text.datasets.Conll05st",
227
    level=1,
228
    reason="Please use new dataset API which supports paddle.io.DataLoader")
D
dangqingqing 已提交
229
def get_embedding():
Q
qijun 已提交
230 231 232
    """
    Get the trained word vector based on Wikipedia corpus.
    """
233
    return paddle.dataset.common.download(EMB_URL, 'conll05st', EMB_MD5)
D
dangqingqing 已提交
234 235


236 237 238
@deprecated(
    since="2.0.0",
    update_to="paddle.text.datasets.Conll05st",
239
    level=1,
240
    reason="Please use new dataset API which supports paddle.io.DataLoader")
D
dangqingqing 已提交
241
def test():
Q
qijun 已提交
242 243 244
    """
    Conll05 test set creator.

Q
qijun 已提交
245
    Because the training dataset is not free, the test dataset is used for
Q
qijun 已提交
246 247 248
    training. It returns a reader creator, each sample in the reader is nine
    features, including sentence sequence, predicate, predicate context,
    predicate context flag and tagged sequence.
Q
qijun 已提交
249

Q
qijun 已提交
250
    :return: Training reader creator
Q
qijun 已提交
251 252
    :rtype: callable
    """
D
dangqingqing 已提交
253 254
    word_dict, verb_dict, label_dict = get_dict()
    reader = corpus_reader(
255
        paddle.dataset.common.download(DATA_URL, 'conll05st', DATA_MD5),
D
dangqingqing 已提交
256 257 258
        words_name='conll05st-release/test.wsj/words/test.wsj.words.gz',
        props_name='conll05st-release/test.wsj/props/test.wsj.props.gz')
    return reader_creator(reader, word_dict, verb_dict, label_dict)
Y
Yancey1989 已提交
259 260


261 262 263
@deprecated(
    since="2.0.0",
    update_to="paddle.text.datasets.Conll05st",
264
    level=1,
265
    reason="Please use new dataset API which supports paddle.io.DataLoader")
266
def fetch():
267 268 269 270 271
    paddle.dataset.common.download(WORDDICT_URL, 'conll05st', WORDDICT_MD5)
    paddle.dataset.common.download(VERBDICT_URL, 'conll05st', VERBDICT_MD5)
    paddle.dataset.common.download(TRGDICT_URL, 'conll05st', TRGDICT_MD5)
    paddle.dataset.common.download(EMB_URL, 'conll05st', EMB_MD5)
    paddle.dataset.common.download(DATA_URL, 'conll05st', DATA_MD5)