conll05.py 8.9 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dangqingqing 已提交
14
"""
Q
qijun 已提交
15
Conll05 dataset.
Q
qijun 已提交
16 17 18 19 20
Paddle semantic role labeling Book and demo use this dataset as an example.
Because Conll05 is not free in public, the default downloaded URL is test set
of Conll05 (which is public). Users can change URL and MD5 to their Conll
dataset. And a pre-trained word vector model based on Wikipedia corpus is used
to initialize SRL model.
D
dangqingqing 已提交
21 22
"""

23 24
from __future__ import print_function

Q
qijun 已提交
25 26 27
import tarfile
import gzip
import itertools
28
import paddle.dataset.common
M
minqiyang 已提交
29
import paddle.compat as cpt
M
minqiyang 已提交
30
from six.moves import zip, range
Q
qijun 已提交
31

32
__all__ = ['test, get_dict', 'get_embedding']
Y
Yu Yang 已提交
33

M
minqiyang 已提交
34
DATA_URL = 'http://paddlemodels.bj.bcebos.com/conll05st/conll05st-tests.tar.gz'
D
dangqingqing 已提交
35
DATA_MD5 = '387719152ae52d60422c016e92a742fc'
T
typhoonzero 已提交
36
WORDDICT_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2FwordDict.txt'
D
dangqingqing 已提交
37
WORDDICT_MD5 = 'ea7fb7d4c75cc6254716f0177a506baa'
T
typhoonzero 已提交
38
VERBDICT_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2FverbDict.txt'
D
dangqingqing 已提交
39
VERBDICT_MD5 = '0d2977293bbb6cbefab5b0f97db1e77c'
T
typhoonzero 已提交
40
TRGDICT_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2FtargetDict.txt'
D
dangqingqing 已提交
41
TRGDICT_MD5 = 'd8c7f03ceb5fc2e5a0fa7503a4353751'
T
typhoonzero 已提交
42
EMB_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2Femb'
D
dangqingqing 已提交
43 44 45 46 47
EMB_MD5 = 'bf436eb0faa1f6f9103017f8be57cdb7'

UNK_IDX = 0


J
jiaozhenyu 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
def load_label_dict(filename):
    d = dict()
    tag_dict = set()
    with open(filename, 'r') as f:
        for i, line in enumerate(f):
            line = line.strip()
            if line.startswith("B-"):
                tag_dict.add(line[2:])
            elif line.startswith("I-"):
                tag_dict.add(line[2:])
        index = 0
        for tag in tag_dict:
            d["B-" + tag] = index
            index += 1
            d["I-" + tag] = index
            index += 1
        d["O"] = index
    return d


D
dangqingqing 已提交
68 69 70 71 72 73 74 75 76 77
def load_dict(filename):
    d = dict()
    with open(filename, 'r') as f:
        for i, line in enumerate(f):
            d[line.strip()] = i
    return d


def corpus_reader(data_path, words_name, props_name):
    """
78
    Read one corpus. It returns an iterator. Each element of
D
dangqingqing 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    this iterator is a tuple including sentence and labels. The sentence is
    consist of a list of word IDs. The labels include a list of label IDs.
    :return: a iterator of data.
    :rtype: iterator
    """

    def reader():
        tf = tarfile.open(data_path)
        wf = tf.extractfile(words_name)
        pf = tf.extractfile(props_name)
        with gzip.GzipFile(fileobj=wf) as words_file, gzip.GzipFile(
                fileobj=pf) as props_file:
            sentences = []
            labels = []
            one_seg = []
94
            for word, label in zip(words_file, props_file):
M
minqiyang 已提交
95 96
                word = cpt.to_text(word.strip())
                label = cpt.to_text(label.strip().split())
D
dangqingqing 已提交
97 98

                if len(label) == 0:  # end of sentence
99
                    for i in range(len(one_seg[0])):
D
dangqingqing 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
                        a_kind_lable = [x[i] for x in one_seg]
                        labels.append(a_kind_lable)

                    if len(labels) >= 1:
                        verb_list = []
                        for x in labels[0]:
                            if x != '-':
                                verb_list.append(x)

                        for i, lbl in enumerate(labels[1:]):
                            cur_tag = 'O'
                            is_in_bracket = False
                            lbl_seq = []
                            verb_word = ''
                            for l in lbl:
                                if l == '*' and is_in_bracket == False:
                                    lbl_seq.append('O')
                                elif l == '*' and is_in_bracket == True:
                                    lbl_seq.append('I-' + cur_tag)
                                elif l == '*)':
                                    lbl_seq.append('I-' + cur_tag)
                                    is_in_bracket = False
                                elif l.find('(') != -1 and l.find(')') != -1:
                                    cur_tag = l[1:l.find('*')]
                                    lbl_seq.append('B-' + cur_tag)
                                    is_in_bracket = False
                                elif l.find('(') != -1 and l.find(')') == -1:
                                    cur_tag = l[1:l.find('*')]
                                    lbl_seq.append('B-' + cur_tag)
                                    is_in_bracket = True
                                else:
131 132
                                    raise RuntimeError('Unexpected label: %s' %
                                                       l)
D
dangqingqing 已提交
133 134 135 136 137 138 139 140 141 142

                            yield sentences, verb_list[i], lbl_seq

                    sentences = []
                    labels = []
                    one_seg = []
                else:
                    sentences.append(word)
                    one_seg.append(label)

143 144 145 146
        pf.close()
        wf.close()
        tf.close()

D
dangqingqing 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    return reader


def reader_creator(corpus_reader,
                   word_dict=None,
                   predicate_dict=None,
                   label_dict=None):
    def reader():
        for sentence, predicate, labels in corpus_reader():

            sen_len = len(sentence)

            verb_index = labels.index('B-V')
            mark = [0] * len(labels)
            if verb_index > 0:
                mark[verb_index - 1] = 1
                ctx_n1 = sentence[verb_index - 1]
            else:
                ctx_n1 = 'bos'

            if verb_index > 1:
                mark[verb_index - 2] = 1
                ctx_n2 = sentence[verb_index - 2]
            else:
                ctx_n2 = 'bos'

            mark[verb_index] = 1
            ctx_0 = sentence[verb_index]

            if verb_index < len(labels) - 1:
                mark[verb_index + 1] = 1
                ctx_p1 = sentence[verb_index + 1]
            else:
                ctx_p1 = 'eos'

            if verb_index < len(labels) - 2:
                mark[verb_index + 2] = 1
                ctx_p2 = sentence[verb_index + 2]
            else:
                ctx_p2 = 'eos'

            word_idx = [word_dict.get(w, UNK_IDX) for w in sentence]

            ctx_n2_idx = [word_dict.get(ctx_n2, UNK_IDX)] * sen_len
            ctx_n1_idx = [word_dict.get(ctx_n1, UNK_IDX)] * sen_len
            ctx_0_idx = [word_dict.get(ctx_0, UNK_IDX)] * sen_len
            ctx_p1_idx = [word_dict.get(ctx_p1, UNK_IDX)] * sen_len
            ctx_p2_idx = [word_dict.get(ctx_p2, UNK_IDX)] * sen_len

D
dangqingqing 已提交
196
            pred_idx = [predicate_dict.get(predicate)] * sen_len
D
dangqingqing 已提交
197 198
            label_idx = [label_dict.get(w) for w in labels]

D
dangqingqing 已提交
199 200
            yield word_idx, ctx_n2_idx, ctx_n1_idx, \
              ctx_0_idx, ctx_p1_idx, ctx_p2_idx, pred_idx, mark, label_idx
D
dangqingqing 已提交
201

D
update  
dangqingqing 已提交
202
    return reader
D
dangqingqing 已提交
203 204 205


def get_dict():
Q
qijun 已提交
206 207 208
    """
    Get the word, verb and label dictionary of Wikipedia corpus.
    """
R
root 已提交
209
    word_dict = load_dict(
210
        paddle.dataset.common.download(WORDDICT_URL, 'conll05st', WORDDICT_MD5))
R
root 已提交
211
    verb_dict = load_dict(
212
        paddle.dataset.common.download(VERBDICT_URL, 'conll05st', VERBDICT_MD5))
J
jiaozhenyu 已提交
213
    label_dict = load_label_dict(
214
        paddle.dataset.common.download(TRGDICT_URL, 'conll05st', TRGDICT_MD5))
D
dangqingqing 已提交
215 216 217 218
    return word_dict, verb_dict, label_dict


def get_embedding():
Q
qijun 已提交
219 220 221
    """
    Get the trained word vector based on Wikipedia corpus.
    """
222
    return paddle.dataset.common.download(EMB_URL, 'conll05st', EMB_MD5)
D
dangqingqing 已提交
223 224 225


def test():
Q
qijun 已提交
226 227 228
    """
    Conll05 test set creator.

Q
qijun 已提交
229
    Because the training dataset is not free, the test dataset is used for
Q
qijun 已提交
230 231 232
    training. It returns a reader creator, each sample in the reader is nine
    features, including sentence sequence, predicate, predicate context,
    predicate context flag and tagged sequence.
Q
qijun 已提交
233

Q
qijun 已提交
234
    :return: Training reader creator
Q
qijun 已提交
235 236
    :rtype: callable
    """
D
dangqingqing 已提交
237 238
    word_dict, verb_dict, label_dict = get_dict()
    reader = corpus_reader(
239
        paddle.dataset.common.download(DATA_URL, 'conll05st', DATA_MD5),
D
dangqingqing 已提交
240 241 242
        words_name='conll05st-release/test.wsj/words/test.wsj.words.gz',
        props_name='conll05st-release/test.wsj/props/test.wsj.props.gz')
    return reader_creator(reader, word_dict, verb_dict, label_dict)
Y
Yancey1989 已提交
243 244


245
def fetch():
246 247 248 249 250
    paddle.dataset.common.download(WORDDICT_URL, 'conll05st', WORDDICT_MD5)
    paddle.dataset.common.download(VERBDICT_URL, 'conll05st', VERBDICT_MD5)
    paddle.dataset.common.download(TRGDICT_URL, 'conll05st', TRGDICT_MD5)
    paddle.dataset.common.download(EMB_URL, 'conll05st', EMB_MD5)
    paddle.dataset.common.download(DATA_URL, 'conll05st', DATA_MD5)