collective.py 14.7 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import sys
import math
from functools import reduce
20
import os
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

import collections
import six
import logging

import numpy as np

from .. import core, unique_name
from ..framework import Program, default_main_program, default_startup_program
from .details import wait_server_ready

__all__ = ['GradAllReduce', 'LocalSGD']

OpRole = core.op_proto_and_checker_maker.OpRole


class Collective(object):
    '''
    '''

41 42
    def __init__(self, nrings):
        self.nrings = nrings
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        self.endpoints = None
        self.current_endpoint = None
        self.nranks = None
        self.rank = None
        self.startup_program = None
        self.main_program = None
        op_maker = core.op_proto_and_checker_maker
        self.op_role_key = op_maker.kOpRoleAttrName()
        self.op_role_var_key = op_maker.kOpRoleVarAttrName()

    def transpile(self, startup_program, main_program, rank, endpoints,
                  current_endpoint, wait_port):
        # in case of '127.0.0.1:6700,127.0.0.1:6701,...'
        if isinstance(endpoints, str):
            endpoints = endpoints.split(',')

        self.startup_program = startup_program
        if startup_program is None:
            self.startup_program = default_startup_program()

        self.main_program = main_program
        if main_program is None:
            self.main_program = default_main_program()

        self.nranks = len(endpoints)
H
hutuxian 已提交
68
        if self.nranks == 1 and self.mode != "single_process_multi_thread":
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
            raise ValueError('the number of endpoints must > 1')

        if rank < 0:
            raise ValueError('rank must >= 0')
        self.rank = rank

        if current_endpoint not in endpoints:
            raise ValueError('current endpoint %s is not in %s',
                             current_endpoint, str(endpoints))

        self.endpoints = endpoints
        self.current_endpoint = current_endpoint

        self.wait_port = wait_port

        self.startup_program._origin_program = self.startup_program.clone()
        self._transpile_startup_program()

        self.main_program._origin_program = self.main_program.clone()
        self._transpile_main_program()

    def _transpile_main_program(self):
        raise NotImplementedError('call the inherited method of subclasses')

    def _transpile_startup_program(self):
94 95 96 97
        for ring_id in range(self.nrings):
            self._init_communicator(self.startup_program, self.current_endpoint,
                                    self.endpoints, self.rank, ring_id,
                                    self.wait_port)
98 99 100 101 102 103 104 105
        self._broadcast_params()

    def _init_communicator(self, program, current_endpoint, endpoints, rank,
                           ring_id, wait_port):
        nranks = len(endpoints)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
        block = program.global_block()
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
        if core.is_compiled_with_cuda():
            if rank == 0 and wait_port:
                wait_server_ready(other_endpoints)
            nccl_id_var = block.create_var(
                name=unique_name.generate('nccl_id'),
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            block.append_op(
                type='c_gen_nccl_id',
                inputs={},
                outputs={'Out': nccl_id_var},
                attrs={
                    'rank': rank,
                    'endpoint': current_endpoint,
                    'other_endpoints': other_endpoints,
                    self.op_role_key: OpRole.Forward
                })
            block.append_op(
                type='c_comm_init',
                inputs={'X': nccl_id_var},
                outputs={},
                attrs={
                    'nranks': nranks,
                    'rank': rank,
                    'ring_id': ring_id,
                    self.op_role_key: OpRole.Forward
                })
        elif core.is_compiled_with_npu():
L
lw921014 已提交
134 135 136 137 138 139 140
            if rank == 0 and wait_port:
                wait_server_ready(other_endpoints)
            hccl_id_var = block.create_var(
                name=unique_name.generate('hccl_id'),
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            endpoint_to_index_map = {e: idx for idx, e in enumerate(endpoints)}
141
            block.append_op(
L
lw921014 已提交
142
                type='c_gen_hccl_id',
143
                inputs={},
L
lw921014 已提交
144 145 146 147 148 149 150 151 152 153
                outputs={'Out': hccl_id_var},
                attrs={
                    'rank': rank,
                    'endpoint': current_endpoint,
                    'other_endpoints': other_endpoints,
                    self.op_role_key: OpRole.Forward
                })
            block.append_op(
                type='c_comm_init_hccl',
                inputs={'X': hccl_id_var},
154 155 156 157 158
                outputs={},
                attrs={
                    'rank': rank,
                    'ring_id': ring_id,
                    'device_id': int(os.getenv("FLAGS_selected_npus")),
L
lw921014 已提交
159
                    'rank_ids': nranks,
160 161
                    self.op_role_key: OpRole.Forward
                })
162 163 164

    def _broadcast_params(self):
        block = self.startup_program.global_block()
165 166
        ring_id = -1
        for param in block.iter_parameters():
167 168 169
            if param.is_distributed:
                continue

170
            ring_id = (ring_id + 1) % self.nrings
171 172
            block.append_op(
                type='c_broadcast',
173 174
                inputs={'X': param},
                outputs={'Out': param},
175
                attrs={
176
                    'ring_id': ring_id,
177
                    'root': 0,
178
                    self.op_role_key: OpRole.Forward
179
                })
180 181 182 183 184 185 186 187

        for ring_id in range(self.nrings):
            block.append_op(
                type='c_sync_comm_stream',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={'ring_id': ring_id,
                       self.op_role_key: OpRole.Forward})
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

    def _is_loss_grad_op(self, op):
        if self.op_role_key not in op.attr_names:
            return False
        op_role = int(op.all_attrs()[self.op_role_key])
        return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)

    def _is_backward_op(self, op):
        return self.op_role_key in op.attr_names and \
                int(op.all_attrs()[self.op_role_key]) & int(OpRole.Backward)

    def _is_update_op(self, op):
        return 'Param' in op.input_names and 'Grad' in op.input_names and \
                "LearningRate" in op.input_names

    def _is_optimizer_op(self, op):
        return self.op_role_key in op.attr_names and \
                int(op.all_attrs()[self.op_role_key]) & int(OpRole.Optimize)


class GradAllReduce(Collective):
    '''
    '''

212 213
    def __init__(self, nrings=2):
        Collective.__init__(self, nrings)
H
hutuxian 已提交
214
        self.mode = "grad_allreduce"
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

    def _transpile_main_program(self):
        self._insert_scale_loss_grad_ops()
        self._insert_allreduce_ops()

    def _insert_scale_loss_grad_ops(self):
        '''
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        '''
        block = self.main_program.global_block()
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                block._insert_op(
                    idx + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
                        'scale': 1.0 / self.nranks,
236
                        self.op_role_key: OpRole.Backward
237 238 239 240
                    })

    def _insert_allreduce_ops(self):
        block = self.main_program.global_block()
241 242
        ring_id = -1
        grad = None
243 244 245 246 247 248 249 250 251
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_backward_op(op) and \
                    self.op_role_var_key in op.attr_names:
                op_role_var = op.all_attrs()[self.op_role_var_key]

                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0

252
                offset = idx
253
                for i in range(0, len(op_role_var), 2):
254 255
                    param = block.vars[op_role_var[i]]
                    grad = block.vars[op_role_var[i + 1]]
256 257 258
                    if param.is_distributed:
                        continue

259 260 261 262 263 264 265 266 267 268 269 270 271
                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
                            attrs={self.op_role_key: OpRole.Backward})
                        offset += 1

                    # As we search ops reversedly, we should insert c_allreduce_sum
                    # op in the same way to keep the ring_id alternate
                    ring_id = (ring_id + 1) % self.nrings
272
                    block._insert_op(
273 274 275 276
                        offset,
                        type='c_allreduce_sum',
                        inputs={'X': grad},
                        outputs={'Out': grad},
277
                        attrs={
278 279
                            'ring_id': ring_id,
                            self.op_role_key: OpRole.Backward
280
                        })
281 282 283

        if grad is None:
            return
284 285 286

        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
287 288 289 290 291 292 293 294 295 296
                for ring_id in range(self.nrings):
                    block._insert_op(
                        idx + ring_id,
                        type='c_sync_comm_stream',
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
                            self.op_role_key: OpRole.Backward
                        })
297 298 299 300 301 302 303
                break


class LocalSGD(Collective):
    '''
    '''

304 305
    def __init__(self, nrings=2):
        Collective.__init__(self, nrings)
306
        self.snapshot_key = '@SNAPSHOT'
H
hutuxian 已提交
307
        self.mode = "local_sgd"
308 309 310 311 312

    def _transpile_startup_program(self):
        Collective._transpile_startup_program(self)

        block = self.startup_program.global_block()
313
        non_dist_params = []
314
        for param in block.iter_parameters():
315 316
            if not param.is_distributed:
                non_dist_params.append(param)
317

318
        for param in non_dist_params:
319 320 321 322 323 324 325 326 327
            snapshot = block.create_var(
                name=self.snapshot_name(param.name),
                shape=param.shape,
                persistable=True,
                stop_gradient=True)
            block.append_op(
                type='assign',
                inputs={'X': [param]},
                outputs={'Out': [snapshot]},
328
                attrs={self.op_role_key: OpRole.Forward})
329 330 331 332 333 334 335

    def snapshot_name(self, param_name):
        return param_name + self.snapshot_key

    def _transpile_main_program(self):
        block = self.main_program.global_block()
        ordered_param_snapshot = []
336
        ring_id = -1
337 338 339
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_update_op(op):
                param = block.vars[op.input('Param')[0]]
340 341 342
                if param.is_distributed:
                    continue

343 344 345 346
                snapshot = block.create_var(
                    name=self.snapshot_name(param.name),
                    shape=param.shape,
                    persistable=True,
347 348
                    stop_gradient=True,
                    dtype=param.dtype)
349 350 351 352 353 354 355

                block._insert_op(
                    idx + 1,
                    type='elementwise_sub',
                    inputs={'X': [snapshot],
                            'Y': [param]},
                    outputs={'Out': [param]},
356
                    attrs={self.op_role_key: OpRole.Optimize})
357 358 359 360 361
                block._insert_op(
                    idx + 2,
                    type='c_sync_calc_stream',
                    inputs={'X': param},
                    outputs={'Out': param},
362 363
                    attrs={self.op_role_key: OpRole.Optimize})
                ring_id = (ring_id + 1) % self.nrings
364 365
                block._insert_op(
                    idx + 3,
366
                    type='c_allreduce_sum',
367 368 369
                    inputs={'X': [param]},
                    outputs={'Out': [param]},
                    attrs={
370 371
                        'ring_id': ring_id,
                        self.op_role_key: OpRole.Optimize
372 373 374 375
                    })

                ordered_param_snapshot.append((param, snapshot))

376 377 378 379 380 381 382
        for ring_id in range(self.nrings):
            block.append_op(
                type='c_sync_comm_stream',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={'ring_id': ring_id,
                       self.op_role_key: OpRole.Optimize})
383 384 385 386 387 388 389 390 391 392

        for param_snapshot in reversed(ordered_param_snapshot):
            param = param_snapshot[0]
            snapshot = param_snapshot[1]
            block.append_op(
                type='scale',
                inputs={'X': [param]},
                outputs={'Out': [param]},
                attrs={
                    'scale': 1.0 / self.nranks,
393
                    self.op_role_key: OpRole.Optimize
394 395 396 397 398 399
                })
            block.append_op(
                type='elementwise_sub',
                inputs={'X': [snapshot],
                        'Y': [param]},
                outputs={'Out': [param]},
400
                attrs={self.op_role_key: OpRole.Optimize})
401 402 403 404
            block.append_op(
                type='assign',
                inputs={'X': [param]},
                outputs={'Out': [snapshot]},
405
                attrs={self.op_role_key: OpRole.Optimize})
H
hutuxian 已提交
406 407 408 409 410 411 412


class SingleProcessMultiThread(GradAllReduce):
    '''
    '''

    def __init__(self):
H
hutuxian 已提交
413
        GradAllReduce.__init__(self, 1)
H
hutuxian 已提交
414 415 416 417 418
        self.mode = "single_process_multi_thread"

    def _transpile_startup_program(self):
        block = self.startup_program.global_block()
        block.append_op(type='c_comm_init_all', attrs={'ring_id': 0})