collective.py 14.1 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import sys
import math
from functools import reduce
20
import os
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

import collections
import six
import logging

import numpy as np

from .. import core, unique_name
from ..framework import Program, default_main_program, default_startup_program
from .details import wait_server_ready

__all__ = ['GradAllReduce', 'LocalSGD']

OpRole = core.op_proto_and_checker_maker.OpRole


class Collective(object):
    '''
    '''

41 42
    def __init__(self, nrings):
        self.nrings = nrings
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        self.endpoints = None
        self.current_endpoint = None
        self.nranks = None
        self.rank = None
        self.startup_program = None
        self.main_program = None
        op_maker = core.op_proto_and_checker_maker
        self.op_role_key = op_maker.kOpRoleAttrName()
        self.op_role_var_key = op_maker.kOpRoleVarAttrName()

    def transpile(self, startup_program, main_program, rank, endpoints,
                  current_endpoint, wait_port):
        # in case of '127.0.0.1:6700,127.0.0.1:6701,...'
        if isinstance(endpoints, str):
            endpoints = endpoints.split(',')

        self.startup_program = startup_program
        if startup_program is None:
            self.startup_program = default_startup_program()

        self.main_program = main_program
        if main_program is None:
            self.main_program = default_main_program()

        self.nranks = len(endpoints)
H
hutuxian 已提交
68
        if self.nranks == 1 and self.mode != "single_process_multi_thread":
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
            raise ValueError('the number of endpoints must > 1')

        if rank < 0:
            raise ValueError('rank must >= 0')
        self.rank = rank

        if current_endpoint not in endpoints:
            raise ValueError('current endpoint %s is not in %s',
                             current_endpoint, str(endpoints))

        self.endpoints = endpoints
        self.current_endpoint = current_endpoint

        self.wait_port = wait_port

        self.startup_program._origin_program = self.startup_program.clone()
        self._transpile_startup_program()

        self.main_program._origin_program = self.main_program.clone()
        self._transpile_main_program()

    def _transpile_main_program(self):
        raise NotImplementedError('call the inherited method of subclasses')

    def _transpile_startup_program(self):
94 95 96 97
        for ring_id in range(self.nrings):
            self._init_communicator(self.startup_program, self.current_endpoint,
                                    self.endpoints, self.rank, ring_id,
                                    self.wait_port)
98 99 100 101 102 103 104 105
        self._broadcast_params()

    def _init_communicator(self, program, current_endpoint, endpoints, rank,
                           ring_id, wait_port):
        nranks = len(endpoints)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
        block = program.global_block()
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        if core.is_compiled_with_cuda():
            if rank == 0 and wait_port:
                wait_server_ready(other_endpoints)
            nccl_id_var = block.create_var(
                name=unique_name.generate('nccl_id'),
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            block.append_op(
                type='c_gen_nccl_id',
                inputs={},
                outputs={'Out': nccl_id_var},
                attrs={
                    'rank': rank,
                    'endpoint': current_endpoint,
                    'other_endpoints': other_endpoints,
                    self.op_role_key: OpRole.Forward
                })
            block.append_op(
                type='c_comm_init',
                inputs={'X': nccl_id_var},
                outputs={},
                attrs={
                    'nranks': nranks,
                    'rank': rank,
                    'ring_id': ring_id,
                    self.op_role_key: OpRole.Forward
                })
        elif core.is_compiled_with_npu():
            endpoint_to_index_map = {
                e: idx for idx, e in enumerate(endpoints)
            }
            block.append_op(
                type='c_comm_init_hcom',
                inputs={},
                outputs={},
                attrs={
                    'nranks': nranks,
                    'rank': rank,
                    'ring_id': ring_id,
                    'device_id': int(os.getenv("FLAGS_selected_npus")),
                    'rank_ids': [endpoint_to_index_map[e] for e in endpoints],
                    self.op_role_key: OpRole.Forward
                })
149 150 151

    def _broadcast_params(self):
        block = self.startup_program.global_block()
152 153
        ring_id = -1
        for param in block.iter_parameters():
154 155 156
            if param.is_distributed:
                continue

157
            ring_id = (ring_id + 1) % self.nrings
158 159
            block.append_op(
                type='c_broadcast',
160 161
                inputs={'X': param},
                outputs={'Out': param},
162
                attrs={
163
                    'ring_id': ring_id,
164
                    'root': 0,
165
                    self.op_role_key: OpRole.Forward
166
                })
167 168 169 170 171 172 173 174

        for ring_id in range(self.nrings):
            block.append_op(
                type='c_sync_comm_stream',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={'ring_id': ring_id,
                       self.op_role_key: OpRole.Forward})
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

    def _is_loss_grad_op(self, op):
        if self.op_role_key not in op.attr_names:
            return False
        op_role = int(op.all_attrs()[self.op_role_key])
        return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)

    def _is_backward_op(self, op):
        return self.op_role_key in op.attr_names and \
                int(op.all_attrs()[self.op_role_key]) & int(OpRole.Backward)

    def _is_update_op(self, op):
        return 'Param' in op.input_names and 'Grad' in op.input_names and \
                "LearningRate" in op.input_names

    def _is_optimizer_op(self, op):
        return self.op_role_key in op.attr_names and \
                int(op.all_attrs()[self.op_role_key]) & int(OpRole.Optimize)


class GradAllReduce(Collective):
    '''
    '''

199 200
    def __init__(self, nrings=2):
        Collective.__init__(self, nrings)
H
hutuxian 已提交
201
        self.mode = "grad_allreduce"
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

    def _transpile_main_program(self):
        self._insert_scale_loss_grad_ops()
        self._insert_allreduce_ops()

    def _insert_scale_loss_grad_ops(self):
        '''
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        '''
        block = self.main_program.global_block()
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                block._insert_op(
                    idx + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
                        'scale': 1.0 / self.nranks,
223
                        self.op_role_key: OpRole.Backward
224 225 226 227
                    })

    def _insert_allreduce_ops(self):
        block = self.main_program.global_block()
228 229
        ring_id = -1
        grad = None
230 231 232 233 234 235 236 237 238
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_backward_op(op) and \
                    self.op_role_var_key in op.attr_names:
                op_role_var = op.all_attrs()[self.op_role_var_key]

                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0

239
                offset = idx
240
                for i in range(0, len(op_role_var), 2):
241 242
                    param = block.vars[op_role_var[i]]
                    grad = block.vars[op_role_var[i + 1]]
243 244 245
                    if param.is_distributed:
                        continue

246 247 248 249 250 251 252 253 254 255 256 257 258
                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
                            attrs={self.op_role_key: OpRole.Backward})
                        offset += 1

                    # As we search ops reversedly, we should insert c_allreduce_sum
                    # op in the same way to keep the ring_id alternate
                    ring_id = (ring_id + 1) % self.nrings
259
                    block._insert_op(
260 261 262 263
                        offset,
                        type='c_allreduce_sum',
                        inputs={'X': grad},
                        outputs={'Out': grad},
264
                        attrs={
265 266
                            'ring_id': ring_id,
                            self.op_role_key: OpRole.Backward
267
                        })
268 269 270

        if grad is None:
            return
271 272 273

        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
274 275 276 277 278 279 280 281 282 283
                for ring_id in range(self.nrings):
                    block._insert_op(
                        idx + ring_id,
                        type='c_sync_comm_stream',
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
                            self.op_role_key: OpRole.Backward
                        })
284 285 286 287 288 289 290
                break


class LocalSGD(Collective):
    '''
    '''

291 292
    def __init__(self, nrings=2):
        Collective.__init__(self, nrings)
293
        self.snapshot_key = '@SNAPSHOT'
H
hutuxian 已提交
294
        self.mode = "local_sgd"
295 296 297 298 299

    def _transpile_startup_program(self):
        Collective._transpile_startup_program(self)

        block = self.startup_program.global_block()
300
        non_dist_params = []
301
        for param in block.iter_parameters():
302 303
            if not param.is_distributed:
                non_dist_params.append(param)
304

305
        for param in non_dist_params:
306 307 308 309 310 311 312 313 314
            snapshot = block.create_var(
                name=self.snapshot_name(param.name),
                shape=param.shape,
                persistable=True,
                stop_gradient=True)
            block.append_op(
                type='assign',
                inputs={'X': [param]},
                outputs={'Out': [snapshot]},
315
                attrs={self.op_role_key: OpRole.Forward})
316 317 318 319 320 321 322

    def snapshot_name(self, param_name):
        return param_name + self.snapshot_key

    def _transpile_main_program(self):
        block = self.main_program.global_block()
        ordered_param_snapshot = []
323
        ring_id = -1
324 325 326
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_update_op(op):
                param = block.vars[op.input('Param')[0]]
327 328 329
                if param.is_distributed:
                    continue

330 331 332 333
                snapshot = block.create_var(
                    name=self.snapshot_name(param.name),
                    shape=param.shape,
                    persistable=True,
334 335
                    stop_gradient=True,
                    dtype=param.dtype)
336 337 338 339 340 341 342

                block._insert_op(
                    idx + 1,
                    type='elementwise_sub',
                    inputs={'X': [snapshot],
                            'Y': [param]},
                    outputs={'Out': [param]},
343
                    attrs={self.op_role_key: OpRole.Optimize})
344 345 346 347 348
                block._insert_op(
                    idx + 2,
                    type='c_sync_calc_stream',
                    inputs={'X': param},
                    outputs={'Out': param},
349 350
                    attrs={self.op_role_key: OpRole.Optimize})
                ring_id = (ring_id + 1) % self.nrings
351 352
                block._insert_op(
                    idx + 3,
353
                    type='c_allreduce_sum',
354 355 356
                    inputs={'X': [param]},
                    outputs={'Out': [param]},
                    attrs={
357 358
                        'ring_id': ring_id,
                        self.op_role_key: OpRole.Optimize
359 360 361 362
                    })

                ordered_param_snapshot.append((param, snapshot))

363 364 365 366 367 368 369
        for ring_id in range(self.nrings):
            block.append_op(
                type='c_sync_comm_stream',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={'ring_id': ring_id,
                       self.op_role_key: OpRole.Optimize})
370 371 372 373 374 375 376 377 378 379

        for param_snapshot in reversed(ordered_param_snapshot):
            param = param_snapshot[0]
            snapshot = param_snapshot[1]
            block.append_op(
                type='scale',
                inputs={'X': [param]},
                outputs={'Out': [param]},
                attrs={
                    'scale': 1.0 / self.nranks,
380
                    self.op_role_key: OpRole.Optimize
381 382 383 384 385 386
                })
            block.append_op(
                type='elementwise_sub',
                inputs={'X': [snapshot],
                        'Y': [param]},
                outputs={'Out': [param]},
387
                attrs={self.op_role_key: OpRole.Optimize})
388 389 390 391
            block.append_op(
                type='assign',
                inputs={'X': [param]},
                outputs={'Out': [snapshot]},
392
                attrs={self.op_role_key: OpRole.Optimize})
H
hutuxian 已提交
393 394 395 396 397 398 399


class SingleProcessMultiThread(GradAllReduce):
    '''
    '''

    def __init__(self):
H
hutuxian 已提交
400
        GradAllReduce.__init__(self, 1)
H
hutuxian 已提交
401 402 403 404 405
        self.mode = "single_process_multi_thread"

    def _transpile_startup_program(self):
        block = self.startup_program.global_block()
        block.append_op(type='c_comm_init_all', attrs={'ring_id': 0})