matmul.h 5.0 KB
Newer Older
M
Markus Kliegl 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {
namespace math {

// Implements the logic of numpy matmul:
// https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html
//
// but allowing also for a, b to be transposed
//
// Both a & b can be 1- to 3-dimensional. Higher rank tensors are not supported
// yet.
Q
QI JUN 已提交
29
template <typename DeviceContext, typename T>
M
Markus Kliegl 已提交
30 31
class MatMulFunctor {
 public:
Q
QI JUN 已提交
32 33 34
  void operator()(const DeviceContext& context, const framework::Tensor& a,
                  bool trans_a, const framework::Tensor& b, bool trans_b,
                  T alpha, framework::Tensor* out, T beta) {
M
Markus Kliegl 已提交
35 36 37 38 39 40 41 42 43
    auto dim_a = a.dims();
    auto dim_b = b.dims();

    PADDLE_ENFORCE(a.place() == b.place() && b.place() == out->place(),
                   "Tensors must all be in the same place.");
    PADDLE_ENFORCE_GE(dim_a.size(), 1,
                      "Input tensor a must be at least 1-dimensional.");
    PADDLE_ENFORCE_GE(dim_b.size(), 1,
                      "Input tensor b must be at least 1-dimensional.");
C
chengduoZH 已提交
44 45 46 47

    std::vector<int64_t> out_dim;
    int64_t batch_count = 1;
    if (dim_a.size() > 3) {
C
chengduoZH 已提交
48
      PADDLE_ENFORCE(dim_b.size() == dim_a.size(),
C
chengduoZH 已提交
49
                     "The dimensions of X and Y must be the same, and both of "
C
chengduoZH 已提交
50 51
                     "them should be %d-dimensional.",
                     dim_b.size());
C
chengduoZH 已提交
52 53
      // The front rank-2 dimensions are accumulated on the batch_count, and the
      // last two dimensions are used for matrix multiplication.
C
chengduoZH 已提交
54
      for (int j = 0; j < dim_a.size() - 2; ++j) {
C
chengduoZH 已提交
55 56 57
        PADDLE_ENFORCE_EQ(dim_b[j], dim_a[j],
                          "The %d-th dimension of X and Y must be the same.",
                          j);
C
chengduoZH 已提交
58 59 60 61
        out_dim.push_back(dim_a[j]);
        batch_count *= dim_a[j];
      }
    }
M
Markus Kliegl 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

    int M = 0, N = 0, kA = 0, kB = 0, batchCountA = 0, batchCountB = 0,
        strideA = 0, strideB = 0;

    switch (dim_a.size()) {
      case 1:
        // similar to np.matmul:
        // prepend dimension 1 (no transpose) or append dimension 1 (transpose)
        M = trans_a ? dim_a[0] : 1;
        kA = trans_a ? 1 : dim_a[0];
        break;
      case 2:
        M = trans_a ? dim_a[1] : dim_a[0];
        kA = trans_a ? dim_a[0] : dim_a[1];
        break;
      case 3:
        batchCountA = dim_a[0];
        M = trans_a ? dim_a[2] : dim_a[1];
        kA = trans_a ? dim_a[1] : dim_a[2];
        strideA = M * kA;
        break;
      default:
C
chengduoZH 已提交
84 85 86 87 88
        batchCountA = batch_count;
        size_t mat_s = dim_a.size() - 2;
        M = trans_a ? dim_a[mat_s + 1] : dim_a[mat_s];
        kA = trans_a ? dim_a[mat_s] : dim_a[mat_s + 1];
        strideA = M * kA;
M
Markus Kliegl 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    }

    switch (dim_b.size()) {
      case 1:
        // similar to np.matmul:
        // append dimension 1 (no transpose) or prepend dimension 1 (transpose)
        kB = trans_b ? 1 : dim_b[0];
        N = trans_b ? dim_b[0] : 1;
        break;
      case 2:
        kB = trans_b ? dim_b[1] : dim_b[0];
        N = trans_b ? dim_b[0] : dim_b[1];
        break;
      case 3:
        batchCountB = dim_b[0];
        kB = trans_b ? dim_b[2] : dim_b[1];
        N = trans_b ? dim_b[1] : dim_b[2];
        strideB = kB * N;
        break;
      default:
C
chengduoZH 已提交
109 110 111 112 113
        batchCountB = batch_count;
        size_t mat_s = dim_b.size() - 2;
        kB = trans_b ? dim_b[mat_s + 1] : dim_b[mat_s];
        N = trans_b ? dim_b[mat_s] : dim_b[mat_s + 1];
        strideB = kB * N;
M
Markus Kliegl 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    }

    PADDLE_ENFORCE_EQ(
        kA, kB,
        "First matrix's width must be equal with second matrix's height.");
    if (batchCountA && batchCountB) {
      PADDLE_ENFORCE_EQ(
          batchCountA, batchCountB,
          "When input tensors a and b are both batched, they must have the "
          "same batch dimension.");
    }
    int batchCount = std::max(batchCountA, batchCountB);

    CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
    CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;

    if (!batchCount) {
      // regular matrix multiplication
Q
QI JUN 已提交
132 133
      gemm<DeviceContext, T>(context, transA, transB, M, N, kA, alpha,
                             a.data<T>(), b.data<T>(), beta, out->data<T>());
M
Markus Kliegl 已提交
134 135
    } else {
      // batched matrix multiplication
Q
QI JUN 已提交
136 137 138
      batched_gemm<DeviceContext, T>(
          context, transA, transB, M, N, kA, alpha, a.data<T>(), b.data<T>(),
          beta, out->data<T>(), batchCount, strideA, strideB);
M
Markus Kliegl 已提交
139 140 141 142 143 144 145
    }
  }
};

}  // namespace math
}  // namespace operators
}  // namespace paddle