matmul.h 4.1 KB
Newer Older
M
Markus Kliegl 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {
namespace math {

// Implements the logic of numpy matmul:
// https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html
//
// but allowing also for a, b to be transposed
//
// Both a & b can be 1- to 3-dimensional. Higher rank tensors are not supported
// yet.
Q
QI JUN 已提交
29
template <typename DeviceContext, typename T>
M
Markus Kliegl 已提交
30 31
class MatMulFunctor {
 public:
Q
QI JUN 已提交
32 33 34
  void operator()(const DeviceContext& context, const framework::Tensor& a,
                  bool trans_a, const framework::Tensor& b, bool trans_b,
                  T alpha, framework::Tensor* out, T beta) {
M
Markus Kliegl 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    auto dim_a = a.dims();
    auto dim_b = b.dims();

    PADDLE_ENFORCE(a.place() == b.place() && b.place() == out->place(),
                   "Tensors must all be in the same place.");
    PADDLE_ENFORCE_GE(dim_a.size(), 1,
                      "Input tensor a must be at least 1-dimensional.");
    PADDLE_ENFORCE_GE(dim_b.size(), 1,
                      "Input tensor b must be at least 1-dimensional.");
    PADDLE_ENFORCE_LE(dim_a.size(), 3,
                      "Input tensor a must be at most 3-dimensional.");
    PADDLE_ENFORCE_LE(dim_b.size(), 3,
                      "Input tensor b must be at most 3-dimensional.");

    int M = 0, N = 0, kA = 0, kB = 0, batchCountA = 0, batchCountB = 0,
        strideA = 0, strideB = 0;

    switch (dim_a.size()) {
      case 1:
        // similar to np.matmul:
        // prepend dimension 1 (no transpose) or append dimension 1 (transpose)
        M = trans_a ? dim_a[0] : 1;
        kA = trans_a ? 1 : dim_a[0];
        break;
      case 2:
        M = trans_a ? dim_a[1] : dim_a[0];
        kA = trans_a ? dim_a[0] : dim_a[1];
        break;
      case 3:
        batchCountA = dim_a[0];
        M = trans_a ? dim_a[2] : dim_a[1];
        kA = trans_a ? dim_a[1] : dim_a[2];
        strideA = M * kA;
        break;
      default:
        assert(false);
    }

    switch (dim_b.size()) {
      case 1:
        // similar to np.matmul:
        // append dimension 1 (no transpose) or prepend dimension 1 (transpose)
        kB = trans_b ? 1 : dim_b[0];
        N = trans_b ? dim_b[0] : 1;
        break;
      case 2:
        kB = trans_b ? dim_b[1] : dim_b[0];
        N = trans_b ? dim_b[0] : dim_b[1];
        break;
      case 3:
        batchCountB = dim_b[0];
        kB = trans_b ? dim_b[2] : dim_b[1];
        N = trans_b ? dim_b[1] : dim_b[2];
        strideB = kB * N;
        break;
      default:
        assert(false);
    }

    PADDLE_ENFORCE_EQ(
        kA, kB,
        "First matrix's width must be equal with second matrix's height.");
    if (batchCountA && batchCountB) {
      PADDLE_ENFORCE_EQ(
          batchCountA, batchCountB,
          "When input tensors a and b are both batched, they must have the "
          "same batch dimension.");
    }
    int batchCount = std::max(batchCountA, batchCountB);

    CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
    CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;

    if (!batchCount) {
      // regular matrix multiplication
Q
QI JUN 已提交
110 111
      gemm<DeviceContext, T>(context, transA, transB, M, N, kA, alpha,
                             a.data<T>(), b.data<T>(), beta, out->data<T>());
M
Markus Kliegl 已提交
112 113
    } else {
      // batched matrix multiplication
Q
QI JUN 已提交
114 115 116
      batched_gemm<DeviceContext, T>(
          context, transA, transB, M, N, kA, alpha, a.data<T>(), b.data<T>(),
          beta, out->data<T>(), batchCount, strideA, strideB);
M
Markus Kliegl 已提交
117 118 119 120 121 122 123
    }
  }
};

}  // namespace math
}  // namespace operators
}  // namespace paddle