test_activation_op.py 13.4 KB
Newer Older
Q
qijun 已提交
1 2 3
import unittest
import numpy as np
from op_test import OpTest
A
Abhinav Arora 已提交
4
from scipy.special import expit
Q
qijun 已提交
5 6 7 8 9 10 11 12


class TestExp(OpTest):
    def setUp(self):
        self.op_type = "exp"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
13
        self.outputs = {'Out': np.exp(self.inputs['X'])}
Q
qijun 已提交
14 15 16 17 18

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
19
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
20 21 22 23 24 25 26 27


class TestSigmoid(OpTest):
    def setUp(self):
        self.op_type = "sigmoid"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
28
        self.outputs = {'Out': 1 / (1 + np.exp(-self.inputs['X']))}
Q
qijun 已提交
29 30 31 32

    def test_check_output(self):
        self.check_output()

33
    def test_check_grad(self):
F
fengjiayi 已提交
34
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
35 36


37 38 39 40 41 42
class TestLogSigmoid(OpTest):
    def setUp(self):
        self.op_type = "logsigmoid"
        self.inputs = {
            'X': np.random.uniform(-1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
43
        self.outputs = {'Out': np.log(1 / (1 + np.exp(-self.inputs['X'])))}
44 45 46 47 48

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
49
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
50 51


52 53 54 55 56 57
class TestTanh(OpTest):
    def setUp(self):
        self.op_type = "tanh"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
58
        self.outputs = {'Out': np.tanh(self.inputs['X'])}
59 60 61 62 63

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
64
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
65 66


K
Kavya Srinet 已提交
67 68 69 70 71 72
class TestTanhShrink(OpTest):
    def setUp(self):
        self.op_type = "tanh_shrink"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [10, 17]).astype("float32")
        }
F
fengjiayi 已提交
73
        self.outputs = {'Out': self.inputs['X'] - np.tanh(self.inputs['X'])}
K
Kavya Srinet 已提交
74 75 76 77 78

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
79
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
K
Kavya Srinet 已提交
80 81


82 83 84 85 86 87 88 89 90 91 92
class TestHardShrink(OpTest):
    def setUp(self):
        self.op_type = "hard_shrink"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        threshold = 0.5

        self.inputs = {'X': x}
        self.attrs = {'lambda': threshold}

        t = np.copy(x)
        t[(t >= -threshold) & (t <= threshold)] = 0
F
fengjiayi 已提交
93
        self.outputs = {'Out': t}
94 95 96 97 98

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
99
        self.check_grad(['X'], 'Out', max_relative_error=0.005)
100 101


102 103 104 105 106 107 108 109 110 111 112
class TestSoftShrink(OpTest):
    def setUp(self):
        self.op_type = "softshrink"
        lambda_val = 0.1
        self.attrs = {'lambda': lambda_val}
        self.inputs = {
            'X': np.random.uniform(0.25, 10, [4, 4]).astype("float32")
        }
        y = np.copy(self.inputs['X'])
        y = (y < -lambda_val) * (y + lambda_val) + (y > lambda_val) * (
            y - lambda_val)
F
fengjiayi 已提交
113
        self.outputs = {'Out': y}
114 115 116 117 118

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
119
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
120 121


122 123 124 125 126 127
class TestSqrt(OpTest):
    def setUp(self):
        self.op_type = "sqrt"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
128
        self.outputs = {'Out': np.sqrt(self.inputs['X'])}
129 130 131 132 133

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
134
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
135 136 137 138 139


class TestAbs(OpTest):
    def setUp(self):
        self.op_type = "abs"
Q
qijun 已提交
140 141 142 143 144 145
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        # Because we set delta = 0.005 in caculating numeric gradient,
        # if x is too small, such as 0.002, x_neg will be -0.003
        # x_pos will be 0.007, so the numeric gradient is unaccurate.
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
146
        self.inputs = {'X': x}
F
fengjiayi 已提交
147
        self.outputs = {'Out': np.abs(self.inputs['X'])}
148 149 150 151 152

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
153
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
154 155


D
dzhwinter 已提交
156 157 158 159 160
class TestCeil(OpTest):
    def setUp(self):
        self.op_type = "ceil"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        self.inputs = {'X': x}
F
fengjiayi 已提交
161
        self.outputs = {'Out': np.ceil(self.inputs['X'])}
D
dzhwinter 已提交
162 163 164 165 166

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
167
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
D
dzhwinter 已提交
168 169 170 171 172 173 174 175


class TestFloor(OpTest):
    def setUp(self):
        self.op_type = "floor"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        self.inputs = {'X': x}
        # numpy floor need +1
F
fengjiayi 已提交
176
        self.outputs = {'Out': np.floor(self.inputs['X']) + 1.0}
D
dzhwinter 已提交
177 178 179 180 181

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
182
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
D
dzhwinter 已提交
183 184 185 186 187 188 189


class TestRound(OpTest):
    def setUp(self):
        self.op_type = "round"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        self.inputs = {'X': x}
F
fengjiayi 已提交
190
        self.outputs = {'Out': np.round(self.inputs['X'])}
D
dzhwinter 已提交
191 192 193 194 195

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
196
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
D
dzhwinter 已提交
197 198


Q
qijun 已提交
199
class TestRelu(OpTest):
200
    def setUp(self):
Q
qijun 已提交
201 202 203 204 205
        self.op_type = "relu"
        x = np.random.uniform(-1, 1, [11, 17]).astype("float32")
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        self.inputs = {'X': x}
F
fengjiayi 已提交
206
        self.outputs = {'Out': np.maximum(self.inputs['X'], 0)}
207 208 209 210 211

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
212
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
213 214 215 216 217 218


class TestBRelu(OpTest):
    def setUp(self):
        self.op_type = "brelu"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
Y
Yang Yang(Tony) 已提交
219 220
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
221 222
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
223
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
Q
qijun 已提交
224 225

        self.inputs = {'X': x}
226 227 228 229
        self.attrs = {'t_min': t_min, 't_max': t_max}
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
F
fengjiayi 已提交
230
        self.outputs = {'Out': t}
231 232 233 234 235

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
236
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
237 238


239
class TestRelu6(OpTest):
K
Kavya Srinet 已提交
240
    def setUp(self):
241 242 243 244 245 246 247 248 249
        self.op_type = "relu6"
        x = np.random.uniform(-1, 1, [4, 10]).astype("float32")
        threshold = 6.0
        # The same with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02

        self.inputs = {'X': x}
        self.attrs = {'threshold': threshold}
K
Kavya Srinet 已提交
250
        self.outputs = {
F
fengjiayi 已提交
251
            'Out': np.minimum(np.maximum(self.inputs['X'], 0), threshold)
K
Kavya Srinet 已提交
252 253 254 255 256 257
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
258
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
K
Kavya Srinet 已提交
259 260


261 262 263
class TestSoftRelu(OpTest):
    def setUp(self):
        self.op_type = "soft_relu"
Q
qijun 已提交
264
        x = np.random.uniform(-3, 3, [4, 4]).astype("float32")
Y
Yang Yang(Tony) 已提交
265
        threshold = 2.0
Q
qijun 已提交
266 267 268
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
        x[np.abs(x + threshold) < 0.005] = -threshold + 0.02
269 270 271 272 273
        self.inputs = {'X': x}
        self.attrs = {'threshold': threshold}
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
F
fengjiayi 已提交
274
        self.outputs = {'Out': np.log((np.exp(t) + 1))}
275 276 277 278 279

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
280
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
281 282


283 284 285 286 287 288 289 290 291 292
class TestELU(OpTest):
    def setUp(self):
        self.op_type = "elu"
        x = np.random.uniform(-3, 3, [4, 4]).astype("float32")
        alpha = 1.
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
        self.outputs = {
F
fengjiayi 已提交
293
            'Out': np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
294 295 296 297 298 299
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
300
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
301 302


Q
qijun 已提交
303 304 305 306
class TestReciprocal(OpTest):
    def setUp(self):
        self.op_type = "reciprocal"
        self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")}
F
fengjiayi 已提交
307
        self.outputs = {'Out': np.reciprocal(self.inputs['X'])}
Q
qijun 已提交
308 309 310 311 312

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
313
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
314 315 316 317 318 319 320 321


class TestLog(OpTest):
    def setUp(self):
        self.op_type = "log"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
322
        self.outputs = {'Out': np.log(self.inputs['X'])}
Q
qijun 已提交
323 324 325 326 327

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
328
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
329 330 331 332 333 334 335 336


class TestSquare(OpTest):
    def setUp(self):
        self.op_type = "square"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
337
        self.outputs = {'Out': np.square(self.inputs['X'])}
Q
qijun 已提交
338 339 340 341 342

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
343
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
344 345


346 347 348 349
class TestPow(OpTest):
    def setUp(self):
        self.op_type = "pow"
        self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")}
Y
Yang Yang(Tony) 已提交
350
        self.attrs = {'factor': 3.0}
F
fengjiayi 已提交
351
        self.outputs = {'Out': np.power(self.inputs['X'], 3)}
352 353 354 355 356

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
357
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
358 359 360 361 362 363 364 365 366 367 368


class TestSTanh(OpTest):
    def setUp(self):
        self.op_type = "stanh"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
F
fengjiayi 已提交
369
        self.outputs = {'Out': scale_b * np.tanh(self.inputs['X'] * scale_a)}
370 371 372 373

    def test_check_output(self):
        self.check_output()

Q
qijun 已提交
374
    def test_check_grad(self):
F
fengjiayi 已提交
375
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
376 377


K
kexinzhao 已提交
378 379 380 381
class TestSoftplus(OpTest):
    def setUp(self):
        self.op_type = "softplus"
        self.inputs = {
Y
Yu Yang 已提交
382
            'X': np.random.uniform(-1, 1, [11, 17]).astype("float64")
K
kexinzhao 已提交
383
        }
F
fengjiayi 已提交
384
        self.outputs = {'Out': np.log(1 + np.exp(self.inputs['X']))}
K
kexinzhao 已提交
385 386 387 388 389

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
390
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
K
kexinzhao 已提交
391 392


393 394 395 396 397 398 399
class TestSoftsign(OpTest):
    def setUp(self):
        self.op_type = "softsign"
        self.inputs = {
            'X': np.random.uniform(-1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {
F
fengjiayi 已提交
400
            'Out': np.divide(self.inputs['X'], 1 + np.abs(self.inputs['X']))
401 402 403 404 405 406
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
407
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
408 409


410 411 412 413 414 415 416 417 418 419 420 421
class TestThresholdedRelu(OpTest):
    def setUp(self):
        self.op_type = "thresholded_relu"
        threshold = 0.25
        self.relative_error = 0.005
        X = np.random.uniform(-1, 1, [11, 17]).astype("float32")

        # Same reason as TestAbs
        X[np.abs(X - threshold) < self.relative_error] = threshold + 0.2

        self.inputs = {'X': X}
        self.attrs = {'threshold': threshold}
F
fengjiayi 已提交
422
        self.outputs = {'Out': (X > threshold) * X}
423 424 425 426 427

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
428
        self.check_grad(['X'], 'Out', max_relative_error=self.relative_error)
429 430


431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
class TestHardSigmoid(OpTest):
    def setUp(self):
        self.op_type = "hard_sigmoid"
        self.relative_error = 0.002

        X = np.random.uniform(-5, 5, [2, 2]).astype("float32")
        slope = 0.2
        offset = 0.5
        lower_threshold = -offset / slope
        upper_threshold = (1 - offset) / slope

        self.inputs = {'X': X}
        # Same reason as TestAbs
        X[np.abs(X - lower_threshold) < self.relative_error] = \
            lower_threshold + 0.2
        X[np.abs(X - upper_threshold) < self.relative_error] = \
            upper_threshold - 0.2

        temp = X * slope + offset
F
fengjiayi 已提交
450
        self.outputs = {'Out': np.maximum(0.0, np.minimum(1.0, temp))}
451 452 453 454 455

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
456
        self.check_grad(['X'], 'Out', max_relative_error=0.002)
457 458


A
Abhinav Arora 已提交
459 460 461 462 463 464
class TestSwish(OpTest):
    def setUp(self):
        self.op_type = "swish"
        X = np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        self.inputs = {'X': X}
        self.attrs = {'beta': 2.3}
F
fengjiayi 已提交
465
        self.outputs = {'Out': X * expit(self.attrs['beta'] * X)}
A
Abhinav Arora 已提交
466 467 468 469 470

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
471
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
A
Abhinav Arora 已提交
472 473


Q
qijun 已提交
474 475
if __name__ == "__main__":
    unittest.main()