optimizer.cuh.h 4.5 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17 18
#ifdef PADDLE_WITH_HETERPS

#if defined(PADDLE_WITH_CUDA)
Y
yaoxuefeng 已提交
19
#include <curand_kernel.h>
20
#endif
T
Thunderbrook 已提交
21
#include <vector>
T
Thunderbrook 已提交
22
#include "paddle/fluid/framework/fleet/heter_ps/feature_value.h"
23
#include "paddle/fluid/framework/fleet/heter_ps/optimizer_conf.h"
T
Thunderbrook 已提交
24 25 26 27

namespace paddle {
namespace framework {

28
#if defined(PADDLE_WITH_CUDA)
T
Thunderbrook 已提交
29 30 31 32 33 34 35 36 37
template <typename ValType, typename GradType>
class Optimizer {
 public:
  Optimizer() {}

  ~Optimizer() {}

  void initialize() {}

38 39
  __device__ void update_lr(float& w, float& g2sum, float g,  // NOLINT
                            float scale) {
T
Thunderbrook 已提交
40 41 42 43 44 45 46 47 48 49 50
    double add_g2sum = 0;
    double ratio = optimizer_config::learning_rate *
                   sqrt(optimizer_config::initial_g2sum /
                        (optimizer_config::initial_g2sum + g2sum));
    double scaled_grad = g / scale;

    w += scaled_grad * ratio;

    if (w < optimizer_config::min_bound) w = optimizer_config::min_bound;
    if (w > optimizer_config::max_bound) w = optimizer_config::max_bound;

51
    add_g2sum += scaled_grad * scaled_grad;
T
Thunderbrook 已提交
52 53 54 55

    g2sum += add_g2sum;
  }

56 57
  __device__ void update_mf(int n, float* w, float& g2sum,  // NOLINT
                            const float* g, float scale) {
T
Thunderbrook 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70
    double add_g2sum = 0;
    double ratio = optimizer_config::mf_learning_rate *
                   sqrt(optimizer_config::mf_initial_g2sum /
                        (optimizer_config::mf_initial_g2sum + g2sum));
    for (int i = 0; i < n; ++i) {
      double scaled_grad = g[i] / scale;

      w[i] += scaled_grad * ratio;

      if (w[i] < optimizer_config::mf_min_bound)
        w[i] = optimizer_config::mf_min_bound;
      if (w[i] > optimizer_config::mf_max_bound)
        w[i] = optimizer_config::mf_max_bound;
71
      add_g2sum += scaled_grad * scaled_grad;
T
Thunderbrook 已提交
72 73 74 75
    }

    g2sum += add_g2sum / n;
  }
76 77

  __device__ void update_value(ValType& val, const GradType& grad) {  // NOLINT
T
Thunderbrook 已提交
78 79 80
    val.slot = grad.slot;
    val.show += grad.show;
    val.clk += grad.clk;
81 82
    val.delta_score += optimizer_config::nonclk_coeff * (grad.show - grad.clk) +
                       optimizer_config::clk_coeff * grad.clk;
T
Thunderbrook 已提交
83

84
    update_lr(val.lr, val.lr_g2sum, grad.lr_g, grad.show);
T
Thunderbrook 已提交
85 86 87 88 89 90 91

    if (val.mf_size == 0) {
      if (optimizer_config::mf_create_thresholds <=
          optimizer_config::nonclk_coeff * (val.show - val.clk) +
              optimizer_config::clk_coeff * val.clk) {
        val.mf_size = MF_DIM + 1;
        val.mf[0] = 0;
Y
yaoxuefeng 已提交
92 93 94
        int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
        curandState state;
        curand_init(clock64(), tid_x, 0, &state);
T
Thunderbrook 已提交
95
        for (int i = 0; i < MF_DIM; ++i) {
T
Thunderbrook 已提交
96 97
          val.mf[i + 1] =
              (curand_uniform(&state)) * optimizer_config::mf_initial_range;
T
Thunderbrook 已提交
98 99 100
        }
      }
    } else {
101
      update_mf(MF_DIM, &val.mf[1], val.mf[0], grad.mf_g, grad.show);
T
Thunderbrook 已提交
102 103
    }
  }
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

  __device__ void dy_mf_update_value(ValType* ptr, const GradType& grad) {
    ptr->slot = grad.slot;
    ptr->show += grad.show;
    ptr->clk += grad.clk;
    ptr->delta_score +=
        optimizer_config::nonclk_coeff * (grad.show - grad.clk) +
        optimizer_config::clk_coeff * grad.clk;

    update_lr(ptr->lr, ptr->lr_g2sum, grad.lr_g, grad.show);
    // use MF_DIM temporarily
    // ptr->mf_dim = grad.mf_dim;

    if (ptr->mf_size == 0) {
      if (optimizer_config::mf_create_thresholds <=
          optimizer_config::nonclk_coeff * (ptr->show - ptr->clk) +
              optimizer_config::clk_coeff * ptr->clk) {
        // ptr->mf_size = ptr->mf_dim + 1;

        ptr->mf_size = MF_DIM + 1;
        ptr->mf[0] = 0;
        int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
        curandState state;
        curand_init(clock64(), tid_x, 0, &state);
        for (int i = 0; i < MF_DIM; ++i) {
          ptr->mf[i + 1] =
              (curand_uniform(&state)) * optimizer_config::mf_initial_range;
        }
      }
    } else {
      update_mf(MF_DIM, &(ptr->mf[1]), ptr->mf[0], grad.mf_g,
                grad.show);  // for local test
    }
  }
T
Thunderbrook 已提交
138 139
};

140
#endif
T
Thunderbrook 已提交
141 142 143
}  // end namespace framework
}  // end namespace paddle
#endif