optimizer.cuh.h 3.2 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
yaoxuefeng 已提交
16
#include <curand_kernel.h>
T
Thunderbrook 已提交
17
#include <vector>
T
Thunderbrook 已提交
18 19 20
#include "optimizer_conf.h"
#include "paddle/fluid/framework/fleet/heter_ps/feature_value.h"

T
Thunderbrook 已提交
21
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

namespace paddle {
namespace framework {

template <typename ValType, typename GradType>
class Optimizer {
 public:
  Optimizer() {}

  ~Optimizer() {}

  void initialize() {}

  __device__ void update_lr(float& w, float& g2sum, float g, float scale) {
    double add_g2sum = 0;
    double ratio = optimizer_config::learning_rate *
                   sqrt(optimizer_config::initial_g2sum /
                        (optimizer_config::initial_g2sum + g2sum));
    double scaled_grad = g / scale;

    w += scaled_grad * ratio;

    if (w < optimizer_config::min_bound) w = optimizer_config::min_bound;
    if (w > optimizer_config::max_bound) w = optimizer_config::max_bound;

    add_g2sum = scaled_grad * scaled_grad;

    g2sum += add_g2sum;
  }

  __device__ void update_mf(int n, float* w, float& g2sum, const float* g,
                            float scale) {
    double add_g2sum = 0;
    double ratio = optimizer_config::mf_learning_rate *
                   sqrt(optimizer_config::mf_initial_g2sum /
                        (optimizer_config::mf_initial_g2sum + g2sum));
    for (int i = 0; i < n; ++i) {
      double scaled_grad = g[i] / scale;

      w[i] += scaled_grad * ratio;

      if (w[i] < optimizer_config::mf_min_bound)
        w[i] = optimizer_config::mf_min_bound;
      if (w[i] > optimizer_config::mf_max_bound)
        w[i] = optimizer_config::mf_max_bound;
      add_g2sum = scaled_grad * scaled_grad;
    }

    g2sum += add_g2sum / n;
  }
  __device__ void update_value(ValType& val, const GradType& grad) {
    val.slot = grad.slot;
    val.show += grad.show;
    val.clk += grad.clk;
76 77
    val.delta_score += optimizer_config::nonclk_coeff * (grad.show - grad.clk) +
                       optimizer_config::clk_coeff * grad.clk;
T
Thunderbrook 已提交
78

79
    update_lr(val.lr, val.lr_g2sum, grad.lr_g, grad.show);
T
Thunderbrook 已提交
80 81 82 83 84 85 86

    if (val.mf_size == 0) {
      if (optimizer_config::mf_create_thresholds <=
          optimizer_config::nonclk_coeff * (val.show - val.clk) +
              optimizer_config::clk_coeff * val.clk) {
        val.mf_size = MF_DIM + 1;
        val.mf[0] = 0;
Y
yaoxuefeng 已提交
87 88 89
        int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
        curandState state;
        curand_init(clock64(), tid_x, 0, &state);
T
Thunderbrook 已提交
90
        for (int i = 0; i < MF_DIM; ++i) {
T
Thunderbrook 已提交
91 92
          val.mf[i + 1] =
              (curand_uniform(&state)) * optimizer_config::mf_initial_range;
T
Thunderbrook 已提交
93 94 95
        }
      }
    } else {
96
      update_mf(MF_DIM, &val.mf[1], val.mf[0], grad.mf_g, grad.show);
T
Thunderbrook 已提交
97 98 99 100 101 102 103
    }
  }
};

}  // end namespace framework
}  // end namespace paddle
#endif