cpu_bfloat16_pass.cc 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_pass.h"

#include <string>
#include <vector>

#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
18
#include "paddle/fluid/framework/op_version_registry.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace framework {
namespace ir {

using string::PrettyLogDetail;

void UnlinkNodes(ir::Node* a, ir::Node* b) {
  a->outputs.erase(std::remove(a->outputs.begin(), a->outputs.end(), b),
                   a->outputs.end());
  b->inputs.erase(std::remove(b->inputs.begin(), b->inputs.end(), a),
                  b->inputs.end());
}

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
// Checking whether a reorder from FP32 to BF16 should be added before the input
// to the operator
bool IsPermittedInputName(const std::string& input_name) {
  // Only the inputs listed in \"permitted_names\" requires quanitization before
  // the bfloat16 operator. Other inputs, such as Filter and Bias are reordered
  // in the kernel.
  const std::vector<std::string> permitted_names = {"X", "Y", "Input",
                                                    "ResidualData"};
  return (std::find(permitted_names.begin(), permitted_names.end(),
                    input_name) != permitted_names.end());
}

// Checking whether a reorder from BF16 to FP32 should be added after the output
// to the operator
bool IsPermittedOutputName(const std::string& output_name) {
  // XShape is output in transpose2 and reshape2 operators used to store the
  // shape and lod of X. So this output do not need dequantize before.
  return (output_name != "XShape");
}

54 55
void AddQuantize(Graph* g, ir::Node* op, ir::Node* op_in,
                 int* quantize_counter) {
56 57 58 59 60 61 62 63 64 65
  std::vector<std::string> input_names;

  // Find the name of the input linking op to op_in
  for (auto name : op->Op()->InputNames())
    for (auto input_name : op->Op()->Input(name))
      if (input_name == op_in->Name() && IsPermittedInputName(name))
        input_names.push_back(name);

  if (input_names.empty()) return;

66 67 68 69 70 71 72 73 74
  VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
  auto* quantize_out_node = g->CreateVarNode(&quantize_out_desc);

  OpDesc q_desc;
  q_desc.SetType("quantize");
  q_desc.SetInput("Input", std::vector<std::string>({op_in->Name()}));
  q_desc.SetOutput("Output",
                   std::vector<std::string>({quantize_out_node->Name()}));
  q_desc.SetAttr("Scale", 1.f);
75
  q_desc.SetAttr("Shift", 0.0f);
76 77 78 79
  q_desc.SetAttr("bfloat16", true);
  q_desc.SetAttr("output_format", op->Op()->HasAttr("data_layout")
                                      ? op->Op()->GetAttr("data_layout")
                                      : std::string("NCHW"));
80
  auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

  for (auto name = input_names.begin(); name < input_names.end(); name++)
    op->Op()->SetInput(*name,
                       std::vector<std::string>({quantize_out_node->Name()}));

  UnlinkNodes(op_in, op);
  IR_NODE_LINK_TO(op_in, quantize_op);
  IR_NODE_LINK_TO(quantize_op, quantize_out_node);
  IR_NODE_LINK_TO(quantize_out_node, op);
  (*quantize_counter)++;
}

void AddQuantizes(Graph* g, ir::Node* op, int* quantize_counter) {
  auto inputs = op->inputs;
  PADDLE_ENFORCE_GE(inputs.size(), 1,
                    platform::errors::InvalidArgument(
                        "OP(%s)'s inputs(%d) must be equal or greater than 1.",
                        op->Name(), inputs.size()));
  PADDLE_ENFORCE_EQ(op->outputs.size(), 1,
                    platform::errors::InvalidArgument(
                        "OP(%s)'s outputs(%d) must be equal to 1.", op->Name(),
                        op->outputs.size()));

  OpDesc q_desc;
  q_desc.SetType("quantize");

  std::vector<Node*> quantize_out_nodes(inputs.size());
  std::vector<std::string> quantize_out_node_names(inputs.size());

  for (size_t i = 0; i < inputs.size(); i++) {
    VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
    quantize_out_nodes[i] = g->CreateVarNode(&quantize_out_desc);
    quantize_out_node_names[i] = quantize_out_nodes[i]->Name();

    q_desc.SetInput("Input", std::vector<std::string>({inputs[i]->Name()}));
    q_desc.SetOutput("Output",
                     std::vector<std::string>({quantize_out_node_names[i]}));
    q_desc.SetAttr("Scale", 1.f);
119
    q_desc.SetAttr("Shift", 0.0f);
120 121 122 123
    q_desc.SetAttr("bfloat16", true);
    q_desc.SetAttr("output_format", op->Op()->HasAttr("data_layout")
                                        ? op->Op()->GetAttr("data_layout")
                                        : std::string("NCHW"));
124
    auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.
125 126 127 128 129 130 131 132 133 134 135

    UnlinkNodes(inputs[i], op);
    IR_NODE_LINK_TO(inputs[i], quantize_op);
    IR_NODE_LINK_TO(quantize_op, quantize_out_nodes[i]);
    IR_NODE_LINK_TO(quantize_out_nodes[i], op);
    (*quantize_counter)++;
  }

  op->Op()->SetInput("X", quantize_out_node_names);
}

136 137 138
// Operators like Concat and Sum have a single input name X, which actually
// consists of multiple inputs. Such operators require a different way to find
// pattern and add quantize ops.
139 140 141 142 143 144 145 146 147 148 149 150 151
void AddReoderBeforeDuplicatedInputs(ir::Graph* graph, int* quantize_counter) {
  GraphPatternDetector gpd;
  patterns::DuplicatedInputs duplicated_inputs{gpd.mutable_pattern(),
                                               "duplicated_inputs"};
  duplicated_inputs();
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    GET_IR_NODE_FROM_SUBGRAPH(op, op, duplicated_inputs);
    AddQuantizes(g, op, quantize_counter);
  };
  gpd(graph, handler);
}

152 153
// Adding quantize ops before all operators except Concat and Sum, which have
// already been handled in AddReoderBeforeDuplicatedInputs
154
void AddReoderBeforeSingleInputs(ir::Graph* graph, int* quantize_counter) {
155 156 157 158 159 160 161 162
  GraphPatternDetector gpd;
  patterns::FirstBfloat16Ops bfloat16_ops{gpd.mutable_pattern(),
                                          "first_bfloat16_ops"};
  bfloat16_ops();
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    GET_IR_NODE_FROM_SUBGRAPH(op_in, op_in, bfloat16_ops);
    GET_IR_NODE_FROM_SUBGRAPH(op, op, bfloat16_ops);
163
    if (op->Op()->Type() != "sum" && op->Op()->Type() != "concat") {
164
      AddQuantize(g, op, op_in, quantize_counter);
165 166 167
    }
  };
  gpd(graph, handler);
168 169 170 171 172 173
}

void CPUBFloat16Pass::SetInputDataType(ir::Graph* graph) const {
  int quantize_counter = 0;
  AddReoderBeforeDuplicatedInputs(graph, &quantize_counter);
  AddReoderBeforeSingleInputs(graph, &quantize_counter);
174
  PrettyLogDetail("---    added %d quantize ops before bfloat16 op",
175 176 177 178 179 180 181 182
                  quantize_counter);
}

void CPUBFloat16Pass::SetOutputDataType(ir::Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::LastBfloat16Ops bfloat16_ops{gpd.mutable_pattern(),
                                         "last_bfloat16_ops"};
  bfloat16_ops();
183
  int dequantize_counter = 0;
184 185 186 187 188

  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    GET_IR_NODE_FROM_SUBGRAPH(op, op, bfloat16_ops);
    GET_IR_NODE_FROM_SUBGRAPH(op_out, op_out, bfloat16_ops);
189 190 191 192 193 194 195 196 197 198 199 200 201

    if (op->Op()->Type() != "prior_box") {
      // Find the name of the output linking op to op_out
      std::vector<std::string> output_names;
      for (auto name : op->Op()->OutputNames())
        for (auto output_name : op->Op()->Output(name))
          if (output_name == op_out->Name() && IsPermittedOutputName(name))
            output_names.push_back(name);

      if (output_names.empty()) return;

      VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in"));
      auto* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc);
202 203 204

      OpDesc deq_desc;
      deq_desc.SetType("dequantize");
205 206 207
      deq_desc.SetInput("Input",
                        std::vector<std::string>({dequantize_in_node->Name()}));
      deq_desc.SetOutput("Output", std::vector<std::string>({op_out->Name()}));
208
      deq_desc.SetAttr("Scale", 1.0f);
209 210 211 212 213 214 215 216 217 218 219 220 221
      deq_desc.SetAttr("Shift", 0.0f);
      auto dequantize_op =
          g->CreateOpNode(&deq_desc);  // OpDesc will be copied.

      for (auto name = output_names.begin(); name < output_names.end(); name++)
        op->Op()->SetOutput(
            *name, std::vector<std::string>({dequantize_in_node->Name()}));

      UnlinkNodes(op, op_out);
      IR_NODE_LINK_TO(op, dequantize_in_node);
      IR_NODE_LINK_TO(dequantize_in_node, dequantize_op);
      IR_NODE_LINK_TO(dequantize_op, op_out);

222 223 224 225
      dequantize_counter++;
    }
  };
  gpd(graph, handler);
226 227
  PrettyLogDetail("---    added %d dequantize ops after bfloat16 op",
                  dequantize_counter);
228 229 230 231 232 233 234 235 236 237 238 239
}

void CPUBFloat16Pass::ApplyImpl(ir::Graph* graph) const {
  SetInputDataType(graph);
  SetOutputDataType(graph);
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(cpu_bfloat16_pass, paddle::framework::ir::CPUBFloat16Pass);
240 241 242 243 244

REGISTER_PASS_CAPABILITY(cpu_bfloat16_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination().GE(
            "quantize", 1));