cpu_bfloat16_pass.cc 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_pass.h"

#include <string>
#include <unordered_set>
#include <vector>

#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
19
#include "paddle/fluid/framework/op_version_registry.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace framework {
namespace ir {

using string::PrettyLogDetail;

void UnlinkNodes(ir::Node* a, ir::Node* b) {
  a->outputs.erase(std::remove(a->outputs.begin(), a->outputs.end(), b),
                   a->outputs.end());
  b->inputs.erase(std::remove(b->inputs.begin(), b->inputs.end(), a),
                  b->inputs.end());
}

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
void AddQuantize(Graph* g, ir::Node* op, ir::Node* op_in,
                 int* quantize_counter) {
  VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
  auto* quantize_out_node = g->CreateVarNode(&quantize_out_desc);

  OpDesc q_desc;
  q_desc.SetType("quantize");
  q_desc.SetInput("Input", std::vector<std::string>({op_in->Name()}));
  q_desc.SetOutput("Output",
                   std::vector<std::string>({quantize_out_node->Name()}));
  q_desc.SetAttr("Scale", 1.f);
  q_desc.SetAttr("bfloat16", true);
  q_desc.SetAttr("output_format", op->Op()->HasAttr("data_layout")
                                      ? op->Op()->GetAttr("data_layout")
                                      : std::string("NCHW"));
  auto quantize_op = g->CreateOpNode(&q_desc);

  std::vector<std::string> input_names;
  for (auto name : op->Op()->InputNames()) {
    for (auto input_name : op->Op()->Input(name)) {
      if (input_name == op_in->Name()) input_names.push_back(name);
    }
  }

  PADDLE_ENFORCE_NE(
      input_names.empty(), true,
      platform::errors::NotFound(
          "Operator before operator should have input as op output"));

  for (auto name = input_names.begin(); name < input_names.end(); name++)
    op->Op()->SetInput(*name,
                       std::vector<std::string>({quantize_out_node->Name()}));

  UnlinkNodes(op_in, op);
  IR_NODE_LINK_TO(op_in, quantize_op);
  IR_NODE_LINK_TO(quantize_op, quantize_out_node);
  IR_NODE_LINK_TO(quantize_out_node, op);
  (*quantize_counter)++;
}

void AddQuantizes(Graph* g, ir::Node* op, int* quantize_counter) {
  auto inputs = op->inputs;
  PADDLE_ENFORCE_GE(inputs.size(), 1,
                    platform::errors::InvalidArgument(
                        "OP(%s)'s inputs(%d) must be equal or greater than 1.",
                        op->Name(), inputs.size()));
  PADDLE_ENFORCE_EQ(op->outputs.size(), 1,
                    platform::errors::InvalidArgument(
                        "OP(%s)'s outputs(%d) must be equal to 1.", op->Name(),
                        op->outputs.size()));

  OpDesc q_desc;
  q_desc.SetType("quantize");

  std::vector<Node*> quantize_out_nodes(inputs.size());
  std::vector<std::string> quantize_out_node_names(inputs.size());

  for (size_t i = 0; i < inputs.size(); i++) {
    VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
    quantize_out_nodes[i] = g->CreateVarNode(&quantize_out_desc);
    quantize_out_node_names[i] = quantize_out_nodes[i]->Name();

    q_desc.SetInput("Input", std::vector<std::string>({inputs[i]->Name()}));
    q_desc.SetOutput("Output",
                     std::vector<std::string>({quantize_out_node_names[i]}));
    q_desc.SetAttr("Scale", 1.f);
    q_desc.SetAttr("bfloat16", true);
    q_desc.SetAttr("output_format", op->Op()->HasAttr("data_layout")
                                        ? op->Op()->GetAttr("data_layout")
                                        : std::string("NCHW"));
    auto quantize_op = g->CreateOpNode(&q_desc);

    UnlinkNodes(inputs[i], op);
    IR_NODE_LINK_TO(inputs[i], quantize_op);
    IR_NODE_LINK_TO(quantize_op, quantize_out_nodes[i]);
    IR_NODE_LINK_TO(quantize_out_nodes[i], op);
    (*quantize_counter)++;
  }

  op->Op()->SetInput("X", quantize_out_node_names);
}

void AddReoderBeforeDuplicatedInputs(ir::Graph* graph, int* quantize_counter) {
  GraphPatternDetector gpd;
  patterns::DuplicatedInputs duplicated_inputs{gpd.mutable_pattern(),
                                               "duplicated_inputs"};
  duplicated_inputs();
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    GET_IR_NODE_FROM_SUBGRAPH(op, op, duplicated_inputs);
    AddQuantizes(g, op, quantize_counter);
  };
  gpd(graph, handler);
}

void RemoveUnnecessaryReorders(ir::Graph* graph, int* quantize_counter) {
  GraphPatternDetector gpd;
  patterns::UnnecessaryReorders unnecessary_reorders{gpd.mutable_pattern(),
                                                     "unnecessary_reorders"};
  unnecessary_reorders();
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, unnecessary_reorders);
    GET_IR_NODE_FROM_SUBGRAPH(quant_in, quant_in, unnecessary_reorders);
    GET_IR_NODE_FROM_SUBGRAPH(quant_op, quant_op, unnecessary_reorders);
    GET_IR_NODE_FROM_SUBGRAPH(quant_out, quant_out, unnecessary_reorders);

    std::string op_output_name;
    for (auto name : prev_op->Op()->OutputNames())
      for (auto output_name : prev_op->Op()->Output(name))
        if (output_name == quant_in->Name()) op_output_name = name;

    PADDLE_ENFORCE_NE(
        op_output_name.empty(), true,
        platform::errors::NotFound(
            "Operator before operator should have input as op output"));

    prev_op->Op()->SetOutput(op_output_name,
                             std::vector<std::string>({quant_out->Name()}));

    IR_NODE_LINK_TO(prev_op, quant_out);
    GraphSafeRemoveNodes(graph, {quant_in, quant_op});
    (*quantize_counter)--;
  };
  gpd(graph, handler);
}

void AddReoderBeforeSingleInputs(ir::Graph* graph, int* quantize_counter) {
164 165 166 167 168 169 170 171 172
  GraphPatternDetector gpd;
  patterns::FirstBfloat16Ops bfloat16_ops{gpd.mutable_pattern(),
                                          "first_bfloat16_ops"};
  bfloat16_ops();
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, bfloat16_ops);
    GET_IR_NODE_FROM_SUBGRAPH(op_in, op_in, bfloat16_ops);
    GET_IR_NODE_FROM_SUBGRAPH(op, op, bfloat16_ops);
173 174 175 176
    auto prev_op_type = prev_op->Op()->Type();
    if (op->Op()->Type() != "conv2d" && prev_op_type != "quantize" &&
        prev_op_type != "sum" && prev_op_type != "concat") {
      AddQuantize(g, op, op_in, quantize_counter);
177 178 179
    }
  };
  gpd(graph, handler);
180 181 182 183 184 185 186
}

void CPUBFloat16Pass::SetInputDataType(ir::Graph* graph) const {
  int quantize_counter = 0;
  AddReoderBeforeDuplicatedInputs(graph, &quantize_counter);
  RemoveUnnecessaryReorders(graph, &quantize_counter);
  AddReoderBeforeSingleInputs(graph, &quantize_counter);
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
  PrettyLogDetail("---    added %d quantize op before bfloat16 op",
                  quantize_counter);
}

void CPUBFloat16Pass::SetOutputDataType(ir::Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::LastBfloat16Ops bfloat16_ops{gpd.mutable_pattern(),
                                         "last_bfloat16_ops"};
  bfloat16_ops();
  int force_fp32_counter = 0, dequantize_counter = 0;

  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    GET_IR_NODE_FROM_SUBGRAPH(op, op, bfloat16_ops);
    GET_IR_NODE_FROM_SUBGRAPH(op_out, op_out, bfloat16_ops);
    GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, bfloat16_ops);
    if ((op->Op()->HasAttr("force_fp32_output") ||
         op->Op()->HasProtoAttr("force_fp32_output")) &&
        !op->Op()->GetAttrIfExists<bool>("fuse_residual_connection")) {
      op->Op()->SetAttr("force_fp32_output", true);
      force_fp32_counter++;
    } else if (op->Op()->Type() != "prior_box") {
209 210
      VarDesc dequantize_out_desc(patterns::PDNodeName("dequantize", "out"));
      auto* dequantize_out_node = g->CreateVarNode(&dequantize_out_desc);
211 212 213

      OpDesc deq_desc;
      deq_desc.SetType("dequantize");
214 215 216
      deq_desc.SetInput("Input", std::vector<std::string>({op_out->Name()}));
      deq_desc.SetOutput(
          "Output", std::vector<std::string>({dequantize_out_node->Name()}));
217 218 219
      deq_desc.SetAttr("Scale", 1.0f);
      auto dequantize_op = g->CreateOpNode(&deq_desc);

220 221 222 223
      std::string next_op_input_name;
      for (auto name : next_op->Op()->InputNames()) {
        for (auto input_name : next_op->Op()->Input(name)) {
          if (input_name == op_out->Name()) next_op_input_name = name;
224 225 226 227
        }
      }

      PADDLE_ENFORCE_NE(
228
          next_op_input_name.empty(), true,
229
          platform::errors::NotFound(
230
              "Operator before operator should have input as op output"));
231

232 233 234 235 236 237 238
      next_op->Op()->SetInput(
          next_op_input_name,
          std::vector<std::string>({dequantize_out_node->Name()}));
      UnlinkNodes(op_out, next_op);
      IR_NODE_LINK_TO(op_out, dequantize_op);
      IR_NODE_LINK_TO(dequantize_op, dequantize_out_node);
      IR_NODE_LINK_TO(dequantize_out_node, next_op);
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
      dequantize_counter++;
    }
  };
  gpd(graph, handler);
  PrettyLogDetail("---    added %d dequantize op and used %d force_fp32_output",
                  dequantize_counter, force_fp32_counter);
}

void CPUBFloat16Pass::ApplyImpl(ir::Graph* graph) const {
  SetInputDataType(graph);
  SetOutputDataType(graph);
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(cpu_bfloat16_pass, paddle::framework::ir::CPUBFloat16Pass);
257 258 259 260 261

REGISTER_PASS_CAPABILITY(cpu_bfloat16_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination().GE(
            "quantize", 1));