sharding_optimizer.py 49.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid import unique_name, core
import paddle.fluid as fluid

from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_VAR_KEY, CollectiveHelper
J
update  
JZ-LIANG 已提交
19
from paddle.distributed.fleet.meta_optimizers.common import is_backward_op, is_optimizer_op, is_update_op, OpRole
20 21 22 23 24 25 26
from paddle.distributed.fleet.meta_optimizers.meta_optimizer_base import MetaOptimizerBase
from paddle.distributed.fleet.meta_optimizers.sharding.shard import Shard, ProgramSegment
from paddle.distributed.fleet.meta_optimizers.sharding.fp16_helper import FP16Utils
from paddle.distributed.fleet.meta_optimizers.sharding.weight_decay_helper import WeightDecayHelper
from paddle.distributed.fleet.meta_optimizers.sharding.gradient_clip_helper import GradientClipHelper
from paddle.distributed.fleet.meta_optimizers.sharding.prune import ProgramDeps
from paddle.distributed.fleet.meta_optimizers.sharding.utils import *
J
update  
JZ-LIANG 已提交
27

28
import logging
29 30 31 32 33 34
from functools import reduce

__all__ = ["ShardingOptimizer"]


class ShardingOptimizer(MetaOptimizerBase):
S
sandyhouse 已提交
35 36
    """Sharding Optimizer."""

37 38 39 40 41 42
    def __init__(self, optimizer):
        super(ShardingOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
43 44
            "LarsOptimizer",
            "LambOptimizer",
S
update  
sandyhouse 已提交
45
            # "ModelParallelOptimizer",
S
sandyhouse 已提交
46
            "PipelineOptimizer",
47 48 49 50 51 52 53 54 55 56 57 58
        ]
        self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
        self._main_program = None
        self._startup_program = None
        self._segments = []
        # params and fp16 params is for broadcast
        self._params = set([])
        self._broadcast_vars = set([])
        # reduced grads to param name
        self._reduced_grads_to_param = {}
        self._shard = Shard()

S
update  
sandyhouse 已提交
59 60 61 62
        # use sharding as outer parallelism (e.g. inner:Megatron & outer sharding)
        self._as_outer_parallelism = False
        self._inner_parallelism_size = None

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False
        if self.role_maker._worker_num() <= 1:
            return False
        return self.user_defined_strategy.sharding

    def _disable_strategy(self, dist_strategy):
        dist_strategy.sharding = False
        dist_strategy.sharding_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.sharding = True
        dist_strategy.sharding_configs = {"fuse_broadcast_MB": 32}

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
S
sandyhouse 已提交
83
        """Implementation of minimize."""
84 85 86 87
        # TODO: (JZ-LIANG) support multiple comm in future
        # self._nrings = self.user_defined_strategy.nccl_comm_num
        self._nrings_sharding = 1
        self._nrings_dp = 1
88 89
        self._fuse_broadcast_MB = self.user_defined_strategy.sharding_configs[
            "fuse_broadcast_MB"]
90 91
        self.hybrid_dp = self.user_defined_strategy.sharding_configs[
            "hybrid_dp"]
S
update  
sandyhouse 已提交
92 93 94
        self._as_outer_parallelism = self.user_defined_strategy.sharding_configs[
            "as_outer_parallelism"]
        self._inner_parallelism_size = int(
S
sandyhouse 已提交
95
            self.user_defined_strategy.sharding_configs["parallelism"])
S
update  
sandyhouse 已提交
96 97
        self.use_pipeline = self.user_defined_strategy.sharding_configs[
            "use_pipeline"]
S
sandyhouse 已提交
98 99
        self.acc_steps = self.user_defined_strategy.sharding_configs[
            "acc_steps"]
S
update  
sandyhouse 已提交
100 101
        self.schedule_mode = self.user_defined_strategy.sharding_configs[
            "schedule_mode"]
S
sandyhouse 已提交
102
        self.pp_bz = self.user_defined_strategy.sharding_configs["pp_bz"]
103 104 105 106

        if self.inner_opt is None:
            raise ValueError(
                "self.inner_opt of ShardingOptimizer should not be None.")
S
update  
sandyhouse 已提交
107
        if self.use_pipeline:
S
sandyhouse 已提交
108 109
            pp_optimizer = fluid.optimizer.PipelineOptimizer(self.inner_opt,
                                                             self.acc_steps)
S
update  
sandyhouse 已提交
110 111
            main_program = loss.block.program
            main_program._pipeline_opt = dict()
S
update  
sandyhouse 已提交
112
            main_program._pipeline_opt['schedule_mode'] = self.schedule_mode
S
sandyhouse 已提交
113
            main_program._pipeline_opt['pp_bz'] = self.pp_bz
S
sandyhouse 已提交
114 115 116
            pp_rank = self.role_maker._worker_index() // (
                self.user_defined_strategy.sharding_configs[
                    'sharding_group_size'] * self._inner_parallelism_size)
S
update  
sandyhouse 已提交
117 118 119 120
            main_program._pipeline_opt['local_rank'] = pp_rank
            main_program._pipeline_opt[
                'global_rank'] = self.role_maker._worker_index()
            main_program._pipeline_opt['use_sharding'] = True
S
update  
sandyhouse 已提交
121 122
            main_program._pipeline_opt['ring_id'] = 20
            optimize_ops, params_grads, program_list, self.pipeline_pair, self.pp_ring_map = pp_optimizer.minimize(
S
update  
sandyhouse 已提交
123 124 125 126 127
                loss, startup_program, parameter_list, no_grad_set)
            self.pipeline_nodes = len(program_list)
        else:
            optimize_ops, params_grads = self.inner_opt.minimize(
                loss, startup_program, parameter_list, no_grad_set)
128 129 130

        if startup_program is None:
            startup_program = default_startup_program()
S
update  
sandyhouse 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
        if self.use_pipeline:
            startup_program = startup_program._pipeline_opt['startup_program']
            #main_program = main_program._pipeline_opt['section_program']['program']
            print("pp_rank:", pp_rank)
            main_program = program_list[pp_rank]['program']
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))
            main_block = main_program.global_block()
            new_params_grads = []
            for param, grad in params_grads:
                if main_block.has_var(param.name):
                    new_params_grads.append((param, grad))
            params_grads = new_params_grads

        else:
            main_block = loss.block
147 148 149 150
        startup_block = startup_program.global_block()
        self._main_program = main_block.program
        self._startup_program = startup_program

S
update  
sandyhouse 已提交
151 152 153
        if self.use_pipeline:
            pp_optimizer._rename_gradient_var_name(main_block)

154 155 156 157 158 159 160 161 162 163 164 165
        # step1: set_up
        self._set_up(params_grads)

        # step2: split_program
        self._split_program(main_block)

        # step3: add broadcast and reduce ops
        self._add_broadcast_allreduce(main_block)
        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()

        # step4: insert reduce_sum for grad
S
update  
sandyhouse 已提交
166 167 168 169 170 171 172
        # grad_scale_coeff = self.role_maker._worker_num()
        # if self._as_outer_parallelism:
        #     grad_scale_coeff = grad_scale_coeff / self._inner_parallelism_size
        # insert_scale_loss_grad_ops(main_block, scale=1.0 / grad_scale_coeff)
        sharding_group_size = self.user_defined_strategy.sharding_configs[
            'sharding_group_size']
        insert_scale_loss_grad_ops(main_block, scale=1.0 / sharding_group_size)
173 174 175 176 177
        main_block._sync_with_cpp()

        # step5: remove unneeded ops and vars from block
        self._prune_main_program(main_block)
        self._prune_startup_program(startup_block)
S
update  
sandyhouse 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        if self.hybrid_dp:
            self._initialization_broadcast(startup_program)

        if self.use_pipeline:
            # crop ops
            for idx, op in reversed(list(enumerate(main_block.ops))):
                # if op.type == 'fill_constant' and int(op.attr('op_role')) == 16:
                #     out_name = op.output_arg_names[0]
                #     if not 'GRAD' in out_name: continue
                #     param_name = out_name.strip("@GRAD")
                #     #if main_block.has_var(out_name): continue
                #     if self._shard.has_param(param_name): continue
                #     main_block._remove_op(idx)
                if is_update_op(op):
                    op_role_var = op.attr('op_role_var')
                    param_name = op_role_var[0]
                    if not self._shard.has_param(param_name):
                        main_block._remove_op(idx)

S
sandyhouse 已提交
197 198 199 200 201 202 203 204 205 206 207
            for idx, op in reversed(list(enumerate(main_block.ops))):
                if op.type != 'cast': continue
                in_name = op.input_arg_names[0]
                if in_name not in self._params: continue
                #if self._shard.has_param(param_name): continue
                if in_name not in main_block.vars:
                    main_block._remove_op(idx)
            #param_list = []
            #for param_name, grad_name in params_grads:
            #    if self._shard.has_param(param_name):
            #        param_list.append(param_name)
S
update  
sandyhouse 已提交
208
            #pp_optimizer._clear_gradients(main_block, param_list) 
J
update  
JZ-LIANG 已提交
209 210 211 212 213 214 215 216 217 218
            accumulated_gradient_names, first_optimize_op_index = pp_optimizer._accumulate_gradients(
                main_block)
            insert_reduce_ops(
                main_block,
                first_optimize_op_index,
                self.sharding_ring_id,
                accumulated_gradient_names,
                self._shard,
                OpRole.Optimize,
                use_calc_stream=True)
S
update  
sandyhouse 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
            #if not self._shard.has_param(param_name): continue
            ##if not main_block.has_var(grad_name): continue
            #assert main_block.has_var(grad_name)
            #grad_var = main_block.vars[grad_name]
            #grad_var.persistable = True
            #main_block._insert_op(
            #    index=0,
            #    type='fill_constant',
            #    inputs={},
            #    outputs={'Out': [grad_var]},
            #    attrs={
            #        'shape': grad_var.shape,
            #        'dtype': grad_var.dtype,
            #        'value': float(0),
            #        #self._op_device_key: device,
            #        # a trick to run this op once per mini-batch
            #        'op_role': core.op_proto_and_checker_maker.OpRole.LRSched,
            #    })

        #def _create_var(block, ref_var, name):
        #    """
        #    Create a new var for block, which has the same type,
        #    shape and dtype as ref_var, then rename it with the
        #    name `name`.
        #    """
        #    new_var = block.create_var(
        #        name=name,
        #        shape=ref_var.shape,
        #        dtype=ref_var.dtype,
        #        type=ref_var.type,
        #        lod_level=ref_var.lod_level,
        #        persistable=ref_var.persistable,
        #        is_data=ref_var.is_data,
        #        need_check_feed=ref_var.desc.need_check_feed())
        #    new_var.stop_gradient = ref_var.stop_gradient
        #    return new_var

        #def _rename_arg(op, old_name, new_name):
        #    op_desc = op.desc
        #    if isinstance(op_desc, tuple):
        #        op_desc = op_desc[0]
        #    op_desc._rename_input(old_name, new_name)
        #    op_desc._rename_output(old_name, new_name)

        #print("params_grads:", params_grads)
        #for param_name, grad_name in params_grads:
        #    if not self._shard.has_param(param_name): continue
        #    #if not main_block.has_var(grad_name): continue
        #    assert main_block.has_var(grad_name)
        #    use_fp16 = False
        #    fp16_grad_name = param_name + '.cast_fp16@GRAD'
        #    if main_block.has_var(grad_name):
        #        fp16_grad_var = main_block.vars[fp16_grad_name]
        #        use_fp16 = True
        #    grad_var = main_block.vars[grad_name]
        #    if use_fp16:
        #        cast_grad_var_name = paddle.fluid.unique_name.generate(
        #            grad_name)
        #        cast_var = _create_var(main_block, fp16_grad_var,
        #                               cast_grad_var_name)
        #        cast_var.persistable = False
        #        main_block.append_op(
        #            #index=offset + 1,
        #            type='cast',
        #            inputs={'X': grad_var},
        #            outputs={'Out': cast_var},
        #            attrs={
        #                'in_dtype': grad_var.dtype,
        #                'out_dtype': cast_var.dtype,
        #                'op_role':
        #                core.op_proto_and_checker_maker.OpRole.Backward,
        #            })
        #        #offset += 1
        #        main_block.append_op(
        #            #index=offset + 1,
        #            type='sum',
        #            inputs={'X': [fp16_grad_var, cast_var]},
        #            outputs={'Out': fp16_grad_var},
        #            attrs={
        #                'op_role':
        #                core.op_proto_and_checker_maker.OpRole.Backward,
        #                'op_role_var': op_role_var
        #            })

        # for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
        #     offset = index
        #     if is_backward_op(op) and (
        #             'op_role_var' in op.attr_names):
        #         op_role_var = op.all_attrs()['op_role_var']

        #         if len(op_role_var) == 0:
        #             continue
        #         assert len(op_role_var) % 2 == 0
        #         offset = index
        #         for i in range(0, len(op_role_var), 2):
        #             grad_name = op_role_var[i + 1]
        #             if not main_block.has_var(grad_name): continue
        #             grad_var = main_block.vars[grad_name]
        #             if not 'cast_fp16' in grad_name:
        #                 new_grad_var_name = paddle.fluid.unique_name.generate(grad_name)
        #                 new_var = _create_var(main_block, grad_var,
        #                                            new_grad_var_name)
        #                 new_var.persistable = False
        #                 _rename_arg(op, grad_name, new_grad_var_name)
        #                 main_block._insert_op(
        #                     index=offset + 1,
        #                     type='sum',
        #                     inputs={'X': [grad_var, new_var]},
        #                     outputs={'Out': grad_var},
        #                     attrs={
        #                         'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
        #                         'op_role_var': op_role_var
        #                     })
        #                 offset += 1
        #             if 'cast_fp16' in grad_name:
        #                 param_name = op_role_var[i]
        #                 fp32_grad_var_name = param_name + "@GRAD"
        #                 fp32_grad_var = main_block.vars[grad_name]
        #                 cast_grad_var_name = paddle.fluid.unique_name.generate(
        #                     fp32_grad_var_name)
        #                 cast_var = _create_var(main_block, grad_var,
        #                                             cast_grad_var_name)
        #                 cast_var.persistable = False
        #                 main_block._insert_op(
        #                     index=offset + 1,
        #                     type='cast',
        #                     inputs={'X': fp32_grad_var},
        #                     outputs={'Out': cast_var},
        #                     attrs={
        #                         'in_dtype': fp32_grad_var.dtype,
        #                         'out_dtype': cast_var.dtype,
        #                         'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
        #                         # self._op_role_var_key: op_role_var
        #                     })
        #                 offset += 1
        #                 main_block._insert_op(
        #                     index=offset + 1,
        #                     type='sum',
        #                     inputs={'X': [grad_var, cast_var]},
        #                     outputs={'Out': grad_var},
        #                     attrs={
        #                         'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
        #                         'op_role_var': op_role_var})
        main_block._sync_with_cpp()

        with open("start_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(startup_block.program))
        with open("main_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(main_block.program))
370 371 372

        # check op dependecy
        check_broadcast(main_block)
S
sandyhouse 已提交
373 374
        #check_allreduce_sum(main_block, self._shard, self.sharding_ring_id,
        #                    self.dp_ring_id)
S
update  
sandyhouse 已提交
375
        #check_allreduce_sum(main_block, self._shard, self.dp_ring_id)
376 377 378 379 380
        self._wait()
        return optimize_ops, params_grads

    def _set_up(self, params_grads):
        # step 1: initialize nccl
381 382 383 384
        self.global_word_size = self.role_maker._worker_num()
        self.global_rank = self.role_maker._worker_index()
        self.endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.endpoints[self.global_rank]
385
        self._collective_helper = CollectiveHelper(self.role_maker,
386 387 388
                                                   self._nrings_sharding)
        # config sharding & dp groups
        self._init_comm()
S
update  
sandyhouse 已提交
389

S
sandyhouse 已提交
390
        # global
S
update  
sandyhouse 已提交
391
        if self._as_outer_parallelism:
J
update  
JZ-LIANG 已提交
392 393 394
            print("global_group_endpoints:", self.global_group_endpoints)
            print("global_rank:", self.global_rank)
            print("global_ring_id:", self.global_group_id)
S
update  
sandyhouse 已提交
395 396 397
            self._collective_helper._init_communicator(
                self._startup_program, self.current_endpoint,
                self.global_group_endpoints, self.global_rank,
J
update  
JZ-LIANG 已提交
398
                self.global_group_id, False)
S
update  
sandyhouse 已提交
399 400

        if self._as_outer_parallelism:
J
update  
JZ-LIANG 已提交
401 402 403
            print("mp_group_endpoints:", self.mp_group_endpoints)
            print("mp_rank:", self.mp_rank)
            print("mp_ring_id:", self.mp_group_id)
S
update  
sandyhouse 已提交
404 405 406 407
            self._collective_helper._init_communicator(
                self._startup_program, self.current_endpoint,
                self.mp_group_endpoints, self.mp_rank, self.mp_group_id, False)

408
        # sharding
S
sandyhouse 已提交
409 410 411
        print("sharding_group_endpoints:", self.sharding_group_endpoints)
        print("sharding_rank:", self.sharding_rank)
        print("sharding_ring_id:", self.sharding_ring_id)
412 413 414
        self._collective_helper._init_communicator(
            self._startup_program, self.current_endpoint,
            self.sharding_group_endpoints, self.sharding_rank,
S
update  
sandyhouse 已提交
415
            self.sharding_ring_id, False)
S
update  
sandyhouse 已提交
416

417 418
        # dp
        if self.hybrid_dp:
419
            self._collective_helper._init_communicator(
420
                self._startup_program, self.current_endpoint,
J
update  
JZ-LIANG 已提交
421
                self.dp_group_endpoints, self.dp_rank, self.dp_ring_id, False)
S
update  
sandyhouse 已提交
422 423
        # pp
        if self.use_pipeline:
S
sandyhouse 已提交
424 425 426
            print("pp_group_endpoints:", self.pp_group_endpoints)
            print("pp_rank:", self.pp_rank)
            print("pp_ring_id:", self.pp_ring_id)
S
update  
sandyhouse 已提交
427
            if self.schedule_mode == 0:  # GPipe
S
sandyhouse 已提交
428 429
                self._collective_helper._init_communicator(
                    self._startup_program, self.current_endpoint,
S
update  
sandyhouse 已提交
430 431 432 433 434 435 436 437
                    self.pp_group_endpoints, self.pp_rank, self.pp_ring_id,
                    False)
                self._collective_helper._init_communicator(
                    self._startup_program, self.current_endpoint,
                    self.pp_group_endpoints, self.pp_rank, self.pp_ring_id + 2,
                    False)
            else:
                for pair in self.pipeline_pair:
S
update  
sandyhouse 已提交
438 439 440
                    pair_key = pair[0] * 1000 + pair[1]
                    ring_id = self.pp_ring_map[pair_key]
                    print("pp pair:{}, ring_id: {}".format(pair, ring_id))
S
update  
sandyhouse 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453
                    if self.pp_rank not in pair: continue
                    pp_group_endpoints = [
                        self.pp_group_endpoints[pair[0]],
                        self.pp_group_endpoints[pair[1]],
                    ]
                    if pair[0] < pair[1]:
                        start_ring_id = self.pp_ring_id + pair[1] - pair[0] - 1
                    else:
                        start_ring_id = self.pp_ring_id + 2 + pair[0] - pair[
                            1] - 1
                    pp_rank = 0 if self.pp_rank == pair[0] else 1
                    self._collective_helper._init_communicator(
                        self._startup_program, self.current_endpoint,
S
update  
sandyhouse 已提交
454
                        pp_group_endpoints, pp_rank, ring_id, False, False)
455

456 457 458 459 460
        startup_block = self._startup_program.global_block()
        startup_block._sync_with_cpp()

        # step 2: split params
        self._params = set([x[0].name for x in params_grads])
461 462
        self._shard.setup(params_grads, self.sharding_rank,
                          self.sharding_group_size)
463 464 465 466 467 468

        # step 3: get broadcast vars
        self._broadcast_vars = self._shard.find_broadcast_params(
            self._main_program.global_block())

    def _wait(self, ):
J
update  
JZ-LIANG 已提交
469 470 471 472 473
        # only the first parallelsm group that init nccl need to be wait. 
        if self._as_outer_parallelism:
            endpoints = self.global_group_endpoints[:]
        else:
            endpoints = self.sharding_group_endpoints[:]
474
        current_endpoint = endpoints[self.role_maker._worker_index()]
J
update  
JZ-LIANG 已提交
475
        if self.sharding_rank == 0:
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
            self._collective_helper._wait(current_endpoint, endpoints)

    def _split_program(self, block):
        for op_idx, op in reversed(list(enumerate(block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                last_backward_op_idx = op_idx + 1
                break
        segment = ProgramSegment(block)
        segment._end_idx = last_backward_op_idx
        for op_idx in reversed(range(last_backward_op_idx)):
            op = block.ops[op_idx]
            assert (int(op.attr('op_role')) != int(OpRole.Optimize))
            if segment._param_mem >= self._fuse_broadcast_MB:
                segment._start_idx = op_idx + 1
                self._segments.insert(0, segment)
                segment = ProgramSegment(block)
                segment._end_idx = op_idx + 1

            # find broadcast vars
            for input_name in op.desc.input_arg_names():
                if input_name not in self._broadcast_vars:
                    continue
                if input_name in segment._param2broadcast:
                    # skip broadcast because it reuse the old broadcast var
                    broadcast_name = segment._param2broadcast[input_name]
                    if input_name != broadcast_name:
                        op._rename_input(input_name, broadcast_name)
                    continue
                if self._shard.has_param(input_name):
                    broadcast_var_name = input_name
                else:
                    broadcast_var_name = unique_name.generate(input_name +
                                                              "@BroadCast")
                    segment._fill_constant_vars.append(broadcast_var_name)
                segment._param2broadcast[input_name] = broadcast_var_name
                segment._broadcast_vars.append((broadcast_var_name,
                                                self._shard.device(input_name)))
                segment._param_mem += get_var_size(
                    self._main_program.global_block().var(input_name))

            # find reduce vars
J
update  
JZ-LIANG 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529
            if not self.use_pipeline:
                if is_backward_op(op) and \
                        OP_ROLE_VAR_KEY in op.attr_names:
                    op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                    if len(op_role_var) != 0:
                        assert len(op_role_var) % 2 == 0
                        for i in range(0, len(op_role_var), 2):
                            param, reduced_grad = op_role_var[i], op_role_var[
                                i + 1]
                            segment._allreduce_vars.append(reduced_grad)
                            #assert (
                            #    reduced_grad not in self._reduced_grads_to_param)
                            self._reduced_grads_to_param[reduced_grad] = param
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546

            # find cast op
            if FP16Utils.is_fp16_cast_op(block, op, self._params):
                fp32_param = op.desc.input_arg_names()[0]
                fp16_param = op.desc.output_arg_names()[0]
                if self._shard.has_param(fp32_param):
                    segment._cast_ops[fp16_param] = fp32_param

        if segment._param_mem > 0:
            segment._start_idx = 0
            self._segments.insert(0, segment)
        return

    def _prune_main_program(self, block):
        """
        calculate deps from allredce op to optimize op,
        remove ops and vars not needed in this worker
547 548 549 550 551 552

        1. prune regularization (weight decay)
        2. prune cast_fp32_to_fp16; update amp_infine_checking
        3. prune gradient_clip related; update global_norm_sum
        4. prune optimizer op + param + gradient
            
553 554 555
        """
        weightdecay_helper = WeightDecayHelper()
        weightdecay_helper.prune_weight_decay(block, self._shard)
S
update  
sandyhouse 已提交
556 557 558 559
        # NOTE (JZ-LIANG) the sync of FoundInfinite should among one entire Model Parallelism
        # group. and each Data Parallelism group should have its own sync of FoundInfinite
        Model_Paramllelism_ring_id = self.sharding_ring_id
        if self._as_outer_parallelism:
S
update  
sandyhouse 已提交
560
            Model_Paramllelism_ring_id = self.global_group_id
561
        FP16Utils.prune_fp16(block, self._shard, self._reduced_grads_to_param,
S
update  
sandyhouse 已提交
562 563
                             Model_Paramllelism_ring_id)
        gradientclip_helper = GradientClipHelper(Model_Paramllelism_ring_id)
564 565 566 567 568 569 570 571 572 573 574 575
        gradientclip_helper.prune_gradient_clip(block, self._shard)

        # build prog deps
        reduced_grads = []
        for idx, op in enumerate(block.ops):
            input_names = op.desc.input_arg_names()
            output_names = op.desc.output_arg_names()
            if op.type == "c_allreduce_sum":
                assert (len(output_names) == 1)
                output_name = output_names[0]
                reduced_grads.append(output_name)

576
        # prune optimizer state and param
577 578 579 580 581 582 583 584 585 586 587 588 589 590
        pruned_opti_vars = []
        for var_name in list(block.vars.keys()):
            if self._shard.is_opti_var(var_name) and \
              not self._shard.has_opt_var(var_name):
                pruned_opti_vars.append(var_name)
        program_deps = ProgramDeps(block, reduced_grads, pruned_opti_vars)

        # Init
        for var_name in program_deps._end_vars:
            program_deps._should_removed_var.add(var_name)

        # Prune
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type in [
S
update  
sandyhouse 已提交
591 592 593 594 595 596 597
                    "c_allreduce_sum",
                    "c_sync_comm_stream",
                    "c_calc_comm_stream",
                    "c_gen_nccl_id",
                    "c_comm_init",
                    'send_v2',
                    'recv_v2',
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
            ]:
                pass
            elif op.type == "conditional_block":
                assert (op.desc.has_attr("sub_block"))
                subblock_idx = op.desc.attr("sub_block").id
                subblock_deps = program_deps.get_sub_block_deps(subblock_idx)
                # only prune amp subblock
                if subblock_deps is None or not self._is_amp_subblock(op):
                    continue
                # init
                reversed_output_vars = []
                for output_name in op.desc.output("Out"):
                    if output_name in program_deps._should_removed_var:
                        subblock_deps._should_removed_var.add(output_name)
                        program_deps.crop_output_var_from_op(idx, output_name)
                    else:
                        reversed_output_vars.append(output_name)
                # prune
                for sub_op_idx, _ in reversed(
                        list(enumerate(subblock_deps._block.ops))):
                    if subblock_deps.should_remove_op(sub_op_idx):
                        subblock_deps.remove_op(sub_op_idx)
                reversed_input_vars = []
                for input_name in op.desc.input('Input'):
                    if input_name not in subblock_deps._should_removed_var:
                        reversed_input_vars.append(input_name)
                    else:
                        program_deps.crop_input_var_from_op(idx, input_name)
                op.desc.set_input('Input', reversed_input_vars)
                op.desc.set_output('Out', reversed_output_vars)
            else:
629 630
                # if all outputs of this op are in _should_removed_var
                # _should_removed_var: opt state not cur shard
631 632 633 634
                if program_deps.should_remove_op(idx):
                    program_deps.remove_op(idx)

        block._sync_with_cpp()
S
update  
sandyhouse 已提交
635 636 637 638 639 640 641 642
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type == 'concat' and is_optimizer_op(op):
                # remove inputs that not on this card
                reserved_x = []
                for var_name in op.desc.input("X"):
                    if block.has_var(var_name): reserved_x.append(var_name)
                op.desc.set_input('X', reserved_x)
        block._sync_with_cpp()
643 644 645 646 647
        return

    def _add_broadcast_allreduce(self, block):
        """
        _add_broadcast_allreduce
J
update  
JZ-LIANG 已提交
648 649 650

        if combined with pipeline(grad accumulate), 
        the grad allreduce should be done in optimize role
651 652 653
        """
        if len(self._segments) < 1:
            return
654
        # sharding
J
update  
JZ-LIANG 已提交
655 656 657 658
        if self.use_pipeline:
            for idx in range(len(self._segments)):
                assert len(self._segments[idx]._allreduce_vars) == 0

659
        if self._segments[-1]._allreduce_vars:
660 661 662 663 664 665 666
            shard_allredue_vars = self._shard.filter_grads(self._segments[-1]
                                                           ._allreduce_vars)
            if self.hybrid_dp and len(shard_allredue_vars) >= 1:
                insert_sync_comm_ops(block, self._segments[-1]._end_idx,
                                     self.dp_ring_id, shard_allredue_vars)
                insert_allreduce_ops(block, self._segments[-1]._end_idx,
                                     self.dp_ring_id, shard_allredue_vars)
667
            insert_sync_comm_ops(block, self._segments[-1]._end_idx,
668
                                 self.sharding_ring_id,
669 670
                                 self._segments[-1]._allreduce_vars)
            insert_allreduce_ops(block, self._segments[-1]._end_idx,
671
                                 self.sharding_ring_id,
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
                                 self._segments[-1]._allreduce_vars)

        for idx, segment in reversed(list(enumerate(self._segments))):
            allreduce_vars = self._segments[
                idx - 1]._allreduce_vars if idx > 0 else []
            broadcast_vars = self._segments[idx +
                                            1]._broadcast_vars if idx < len(
                                                self._segments) - 1 else []
            fill_constant_vars = self._segments[
                idx + 2]._fill_constant_vars if idx < len(
                    self._segments) - 2 else []
            cast_ops = self._segments[idx + 2]._cast_ops if idx < len(
                self._segments) - 2 else {}

            for op_idx in reversed(range(segment._start_idx, segment._end_idx)):
                op = block.ops[op_idx]
                for input_name in op.desc.input_arg_names():
                    if input_name in segment._param2broadcast and \
                        input_name != segment._param2broadcast[input_name]:
                        op._rename_input(input_name,
                                         segment._param2broadcast[input_name])

            for param_name, broadcast_name in segment._param2broadcast.items():
                if param_name != broadcast_name:
                    block.create_var(
                        name=broadcast_name,
                        shape=self._main_program.global_block().var(
                            param_name).shape,
                        dtype=self._main_program.global_block().var(param_name)
                        .dtype,
                        persistable=False)

            # step1: remove cast ops
            block._sync_with_cpp()
            segment._end_idx += FP16Utils.remove_cast_op(block, self._params,
                                                         segment, 0)

            # step2: add Sync ops
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
            shard_allredue_vars = self._shard.filter_grads(allreduce_vars)
            if self.hybrid_dp and len(shard_allredue_vars) >= 1:
                insert_sync_comm_ops(block, segment._end_idx, self.dp_ring_id,
                                     shard_allredue_vars)

                broad_cast_vars = [x[0] for x in broadcast_vars]
                if len(broad_cast_vars) > 0:
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.sharding_ring_id, broad_cast_vars)
            else:
                comm_dep_vars = allreduce_vars + [x[0] for x in broadcast_vars]
                if len(comm_dep_vars) > 0:
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.sharding_ring_id, comm_dep_vars)

725 726 727 728 729 730 731 732 733 734 735 736 737
            calc_dep_vars = fill_constant_vars + [
                k for k, v in cast_ops.items()
            ] + self._segments[idx]._allreduce_vars

            if len(calc_dep_vars) > 0:
                insert_sync_calc_op(block, segment._end_idx,
                                    [calc_dep_vars[-1]])

            # step3: insert `fill_constant` ops 
            insert_fill_constant_ops(block, segment._end_idx,
                                     fill_constant_vars)

            # step4: add `cast` ops     
S
sandyhouse 已提交
738
            print("cast_ops:", cast_ops)
739 740 741
            insert_cast_ops(block, segment._end_idx, cast_ops)

            # step5: add broadcast ops
742 743
            insert_broadcast_ops(block, segment._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
744
            # step6: add all_reduce ops
745 746 747 748 749 750 751 752 753
            # dp
            if self.hybrid_dp and len(shard_allredue_vars) >= 1:
                insert_allreduce_ops(block, segment._start_idx, self.dp_ring_id,
                                     shard_allredue_vars)
                insert_sync_comm_ops(block, segment._start_idx,
                                     self.sharding_ring_id, allreduce_vars)
            # sharding
            insert_allreduce_ops(block, segment._start_idx,
                                 self.sharding_ring_id, allreduce_vars)
754 755 756 757

            block._sync_with_cpp()

        if self._segments[0]._broadcast_vars:
758 759 760
            broadcast_vars = [x[0] for x in self._segments[0]._broadcast_vars]
            insert_sync_comm_ops(block, self._segments[0]._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
761
            insert_broadcast_ops(block, self._segments[0]._start_idx,
762
                                 self.sharding_ring_id,
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
                                 self._segments[0]._broadcast_vars)

        fill_constant_vars = []
        for x in self._segments[:2]:
            fill_constant_vars += x._fill_constant_vars

        # Join
        cast_ops = {}
        for x in self._segments[:2]:
            for k, v in x._cast_ops.items():
                cast_ops[k] = v

        calc_deps_vars = fill_constant_vars + [k for k, v in cast_ops.items()]
        if fill_constant_vars or cast_ops:
            insert_sync_calc_op(block, self._segments[0]._start_idx,
                                [calc_deps_vars[-1]])

        if fill_constant_vars:
            insert_fill_constant_ops(block, self._segments[0]._start_idx,
                                     fill_constant_vars)

        if cast_ops:
            insert_cast_ops(block, self._segments[0]._start_idx, cast_ops)

        return

    def _prune_startup_program(self, block):
        for idx, op in reversed(list(enumerate(block.ops))):
            for output_name in op.desc.output_arg_names():
                if self._shard.has_var(output_name):
                    continue
                #TODO why do we remove op, when only one var is removed
                block._remove_op(idx, sync=False)
                break

        for var_name in list(block.vars.keys()):
            if self._shard.has_var(var_name):
                continue
            block._remove_var(var_name, sync=False)
        block._sync_with_cpp()
803 804 805

    def _init_comm(self):

J
update  
JZ-LIANG 已提交
806 807 808 809 810 811
        # sharding alone mode
        self.sharding_ring_id = 0
        self.sharding_rank = self.global_rank
        self.sharding_group_endpoints = self.endpoints[:]
        self.sharding_group_size = len(self.endpoints)

812
        if self.hybrid_dp:
S
update  
sandyhouse 已提交
813
            assert self._as_outer_parallelism == False, "hybrid dp is conflict when using sharding as outer parallelism"
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
            self.sharding_group_size = self.user_defined_strategy.sharding_configs[
                "sharding_group_size"]
            self.sharding_ring_id = 0
            self.sharding_rank = self.global_rank % self.sharding_group_size

            self.dp_group_size = self.global_word_size // self.sharding_group_size
            self.dp_rank = self.global_rank // self.sharding_group_size
            self.dp_ring_id = self.sharding_rank + 1

            self.sharding_group_endpoints = [
                ep for idx, ep in enumerate(self.endpoints)
                if (idx // self.sharding_group_size) == self.dp_rank
            ]
            self.dp_group_endpoints = [
                ep for idx, ep in enumerate(self.endpoints)
                if (idx % self.sharding_group_size) == self.sharding_rank
            ]
J
update  
JZ-LIANG 已提交
831 832 833
            self.global_group_endpoints = self.role_maker._get_trainer_endpoints(
            )[:]

834 835 836 837 838 839 840 841 842
            assert self.global_word_size > self.sharding_group_size, \
                "global_word_size: {} should be larger than sharding_group_size: {}".format(self.global_word_size, self.sharding_group_size)
            assert self.global_word_size % self.sharding_group_size == 0, \
                "global_word_size: {} should be divisible to the sharding_group_size: {}".format(self.global_word_size, self.sharding_group_size)
            assert self.dp_group_size *  self.sharding_group_size == self.global_word_size, \
                "global_word_size: {} should be equal to the product of sharding_group_size: {} and dp_group_size: {}".format(
                self.global_word_size,
                self.sharding_group_size,
                self.dp_group_size)
S
update  
sandyhouse 已提交
843 844 845 846 847 848 849 850 851 852
            self.pp_ring_id = -1
            self.pp_rank = -1
            self.pp_group_size = None
            self.pp_group_endpoints = None

            # sharding parallelism is the only model parallelism in the current setting
            self.mp_group_id = self.sharding_ring_id
            self.mp_rank = self.sharding_rank
            self.mp_group_size = self.sharding_group_size
            self.mp_group_endpoints = self.sharding_group_endpoints[:]
853 854 855

            logging.info("Using Sharing&DP mode !")
        else:
S
sandyhouse 已提交
856
            if self._as_outer_parallelism and not self.use_pipeline:
S
update  
sandyhouse 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
                self.sharding_ring_id = 1
                assert self.global_word_size > self._inner_parallelism_size, \
                    "global_word_size: {} should be larger than inner_parallelism_size: {}".format(self.global_word_size, self._inner_parallelism_size)
                assert self.global_word_size % self._inner_parallelism_size == 0, \
                    "global_word_size: {} should be divisible to the inner_parallelism_size: {}".format(self.global_word_size, self._inner_parallelism_size)
                self.sharding_rank = self.global_rank // self._inner_parallelism_size
                self.sharding_group_size = self.role_maker._worker_num(
                ) // self._inner_parallelism_size
                _offset = self.global_rank % self._inner_parallelism_size
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.endpoints)
                    if idx % self._inner_parallelism_size == _offset
                ]

                # the current entire model parallelism group is the combination of innert & sharding parallelism
                self.mp_group_id = 2
                self.mp_rank = self.global_rank
                self.mp_group_size = self.role_maker._worker_num()
                self.mp_group_endpoints = self.endpoints[:]
                logging.info("Using Sharing as Outer parallelism mode !")

                # print(
                #     "init the nccl comm for megatron paramllelism, this should be done in Megatron Metaoptimizer"
                # )
                # partition_idx = self.global_rank // self._inner_parallelism_size
                # magetron_endpoints = self.endpoints[
                #     partition_idx * self._inner_parallelism_size:partition_idx *
                #     self._inner_parallelism_size + self._inner_parallelism_size]
                # magetron_rank = self.global_rank % self._inner_parallelism_size

                # self._collective_helper._init_communicator(
                #     program=self._startup_program,
                #     current_endpoint=self.current_endpoint,
                #     endpoints=magetron_endpoints,
                #     rank=magetron_rank,
                #     ring_id=0,
                #     wait_port=True)
                # logging.info("megatron group size: {}".format(
                #     self._inner_parallelism_size))
                # logging.info("megatron rank: {}".format(magetron_rank))
                # logging.info("megatron endpoints: {}".format(
                #     magetron_endpoints))
            if self.use_pipeline:
S
sandyhouse 已提交
900 901 902 903 904 905 906
                if self._inner_parallelism_size == 1:
                    self.sharding_ring_id = 0
                    self.sharding_group_size = self.user_defined_strategy.sharding_configs[
                        'sharding_group_size']
                    self.sharding_rank = self.global_rank % self.sharding_group_size
                    assert self.sharding_group_size * self.pipeline_nodes * self._inner_parallelism_size == self.role_maker._worker_num(
                    )
S
update  
sandyhouse 已提交
907
                    self.pp_ring_id = 20
S
sandyhouse 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920
                    self.pp_rank = self.global_rank // (
                        self.sharding_group_size * self._inner_parallelism_size)
                    self.sharding_group_endpoints = [
                        ep for idx, ep in enumerate(self.endpoints)
                        if (idx // self.sharding_group_size) == self.pp_rank
                    ]
                    self.pp_group_size = self.pipeline_nodes
                    self.pp_group_endpoints = [
                        ep for idx, ep in enumerate(self.endpoints)
                        if (idx % self.sharding_group_size
                            ) == self.sharding_rank
                    ]
                else:
S
update  
sandyhouse 已提交
921
                    self.mp_group_id = 0
S
sandyhouse 已提交
922
                    self.sharding_ring_id = 1
S
update  
sandyhouse 已提交
923
                    self.pp_ring_id = 20
S
update  
sandyhouse 已提交
924 925 926 927 928 929 930 931
                    self.mp_rank = self.global_rank % self._inner_parallelism_size
                    self.mp_group = self.global_rank // self._inner_parallelism_size
                    self.mp_group_endpoints = [
                        ep for idx, ep in enumerate(self.endpoints)
                        if idx // self._inner_parallelism_size == self.mp_group
                    ]
                    print("megatron_group_endpoints:", self.mp_group_endpoints)
                    print("megatron_rank:", self.mp_rank)
S
sandyhouse 已提交
932 933 934
                    # self.cards_per_node = 8
                    self.sharding_group_size = self.user_defined_strategy.sharding_configs[
                        'sharding_group_size']
S
update  
sandyhouse 已提交
935 936 937 938 939 940
                    self.sharding_rank = (
                        self.global_rank //
                        self._inner_parallelism_size) % self.sharding_group_size
                    self.sharding_group_id = self.global_rank // (
                        self._inner_parallelism_size * self.sharding_group_size)
                    self.megatron_rank = self.global_rank % self._inner_parallelism_size
S
sandyhouse 已提交
941 942
                    self.sharding_group_endpoints = [
                        ep for idx, ep in enumerate(self.endpoints)
S
update  
sandyhouse 已提交
943 944 945 946
                        if (idx // (self._inner_parallelism_size *
                                    self.sharding_group_size)
                            ) == self.sharding_group_id and idx %
                        self._inner_parallelism_size == self.megatron_rank
S
sandyhouse 已提交
947
                    ]
S
update  
sandyhouse 已提交
948 949
                    print("sharding_endpoint:", self.sharding_group_endpoints)
                    print("sharding_rank:", self.sharding_rank)
S
sandyhouse 已提交
950 951 952
                    assert self.sharding_group_size * self.pipeline_nodes * self._inner_parallelism_size == self.role_maker._worker_num(
                    )
                    self.pp_rank = self.global_rank // (
S
update  
sandyhouse 已提交
953 954
                        self.sharding_group_size *
                        self._inner_parallelism_size) % self.pipeline_nodes
S
sandyhouse 已提交
955
                    offset = self.sharding_group_size * self._inner_parallelism_size
S
update  
sandyhouse 已提交
956
                    # TODO: Adjust for dp
S
sandyhouse 已提交
957 958 959 960 961 962 963
                    idx_with_pp_0 = self.global_rank % (
                        self.sharding_group_size * self._inner_parallelism_size)
                    self.pp_group_endpoints = []
                    for i in range(self.pipeline_nodes):
                        self.pp_group_endpoints.append(self.endpoints[
                            idx_with_pp_0])
                        idx_with_pp_0 += offset
S
update  
sandyhouse 已提交
964 965
                    print("pp_group_endpoints:", self.pp_group_endpoints)
                    print("pp_rank:", self.pp_rank)
S
sandyhouse 已提交
966 967 968 969 970

                    #self.pp_group_endpoints = [
                    #    ep for idx, ep in enumerate(self.endpoints)
                    #    if (idx % self.sharding_group_size) == self.sharding_rank
                    #]
S
update  
sandyhouse 已提交
971 972 973 974
                self.global_group_id = 3
                self.global_rank = self.global_rank
                self.global_group_size = self.role_maker._worker_num()
                self.global_group_endpoints = self.endpoints[:]
S
sandyhouse 已提交
975
                logging.info("Using Sharing as Outer parallelism mode !")
S
update  
sandyhouse 已提交
976 977 978 979 980 981
                self.dp_ring_id = -1
                self.dp_rank = -1
                self.dp_group_size = None
                self.dp_group_endpoints = None

                logging.info("Using Sharing with pipeline !")
S
sandyhouse 已提交
982 983 984 985 986
            #else:
            #    self.sharding_ring_id = 0
            #    self.sharding_rank = self.global_rank
            #    self.sharding_group_size = self.role_maker._worker_num()
            #    self.sharding_group_endpoints = self.endpoints
S
update  
sandyhouse 已提交
987

S
sandyhouse 已提交
988 989 990 991 992
            #    # sharding parallelism is the only model parallelism in the current setting
            #    self.mp_group_id = self.sharding_ring_id
            #    self.mp_rank = self.sharding_rank
            #    self.mp_group_size = self.sharding_group_size
            #    self.mp_group_endpoints = self.sharding_group_endpoints[:]
S
update  
sandyhouse 已提交
993

S
sandyhouse 已提交
994
            #    logging.info("Using Sharing alone mode !")
S
update  
sandyhouse 已提交
995 996 997 998 999 1000

            self.dp_ring_id = -1
            self.dp_rank = -1
            self.dp_group_size = None
            self.dp_group_endpoints = None

S
sandyhouse 已提交
1001 1002 1003 1004 1005 1006 1007 1008
            #self.pp_ring_id = -1
            #self.pp_rank = -1
            #self.pp_group_size = None
            #self.pp_group_endpoints = None
            #self.dp_ring_id = -1
            #self.dp_rank = -1
            #self.dp_group_size = None
            #self.dp_group_endpoints = None
1009 1010 1011

            logging.info("Using Sharing alone mode !")

S
sandyhouse 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
        #logging.info("global word size: {}".format(self.global_word_size))
        #logging.info("global rank: {}".format(self.global_rank))
        #logging.info("sharding group_size: {}".format(self.sharding_group_size))
        #logging.info("sharding rank: {}".format(self.sharding_rank))
        #logging.info("current model parallelism group_size: {}".format(
        #    self.mp_group_size))
        #logging.info("current model parallelism rank: {}".format(self.mp_rank))
        #logging.info("dp group size: {}".format(self.dp_group_size))
        #logging.info("dp rank: {}".format(self.dp_rank))
        #logging.info("current endpoint: {}".format(self.current_endpoint))
        #logging.info("global word endpoints: {}".format(self.endpoints))
        #logging.info("sharding group endpoints: {}".format(
        #    self.sharding_group_endpoints))
        #logging.info("current model parallelism group endpoints: {}".format(
        #    self.mp_group_endpoints))
        #logging.info("dp group endpoints: {}".format(self.dp_group_endpoints))
1028 1029

        return
S
update  
sandyhouse 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

    def _initialization_broadcast(self, startup_prog):
        """
        this funtion is to ensure the initialization between dp group to be 
        identical when hybrid-dp is used.
        """
        block = startup_prog.global_block()
        params = []
        for param in block.iter_parameters():
            params.append(param)
            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': self.dp_ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })
        block.append_op(
            type='c_sync_comm_stream',
            inputs={'X': params},
            outputs={'Out': params},
            attrs={'ring_id': self.dp_ring_id,
                   OP_ROLE_KEY: OpRole.Forward})