sharding_optimizer.py 41.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid import unique_name, core
import paddle.fluid as fluid

from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_VAR_KEY, CollectiveHelper
S
update  
sandyhouse 已提交
19
from paddle.distributed.fleet.meta_optimizers.common import is_backward_op, is_optimizer_op, is_update_op
20 21 22 23 24 25 26
from paddle.distributed.fleet.meta_optimizers.meta_optimizer_base import MetaOptimizerBase
from paddle.distributed.fleet.meta_optimizers.sharding.shard import Shard, ProgramSegment
from paddle.distributed.fleet.meta_optimizers.sharding.fp16_helper import FP16Utils
from paddle.distributed.fleet.meta_optimizers.sharding.weight_decay_helper import WeightDecayHelper
from paddle.distributed.fleet.meta_optimizers.sharding.gradient_clip_helper import GradientClipHelper
from paddle.distributed.fleet.meta_optimizers.sharding.prune import ProgramDeps
from paddle.distributed.fleet.meta_optimizers.sharding.utils import *
27
import logging
28 29 30 31 32 33 34 35 36 37 38 39
from functools import reduce

__all__ = ["ShardingOptimizer"]


class ShardingOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(ShardingOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
40 41
            "LarsOptimizer",
            "LambOptimizer",
S
update  
sandyhouse 已提交
42
            "ModelParallelOptimizer",
43 44 45 46 47 48 49 50 51 52 53 54
        ]
        self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
        self._main_program = None
        self._startup_program = None
        self._segments = []
        # params and fp16 params is for broadcast
        self._params = set([])
        self._broadcast_vars = set([])
        # reduced grads to param name
        self._reduced_grads_to_param = {}
        self._shard = Shard()

S
update  
sandyhouse 已提交
55 56 57 58
        # use sharding as outer parallelism (e.g. inner:Megatron & outer sharding)
        self._as_outer_parallelism = False
        self._inner_parallelism_size = None

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False
        if self.role_maker._worker_num() <= 1:
            return False
        return self.user_defined_strategy.sharding

    def _disable_strategy(self, dist_strategy):
        dist_strategy.sharding = False
        dist_strategy.sharding_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.sharding = True
        dist_strategy.sharding_configs = {"fuse_broadcast_MB": 32}

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
79 80 81 82
        # TODO: (JZ-LIANG) support multiple comm in future
        # self._nrings = self.user_defined_strategy.nccl_comm_num
        self._nrings_sharding = 1
        self._nrings_dp = 1
83 84
        self._fuse_broadcast_MB = self.user_defined_strategy.sharding_configs[
            "fuse_broadcast_MB"]
85 86
        self.hybrid_dp = self.user_defined_strategy.sharding_configs[
            "hybrid_dp"]
S
update  
sandyhouse 已提交
87 88 89 90 91 92 93
        self._as_outer_parallelism = self.user_defined_strategy.sharding_configs[
            "as_outer_parallelism"]
        self._inner_parallelism_size = int(
            self.user_defined_strategy.sharding_configs[
                "inner_parallelism_size"])
        self.use_pipeline = self.user_defined_strategy.sharding_configs[
            "use_pipeline"]
94 95 96 97

        if self.inner_opt is None:
            raise ValueError(
                "self.inner_opt of ShardingOptimizer should not be None.")
S
update  
sandyhouse 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        if self.use_pipeline:
            pp_optimizer = fluid.optimizer.PipelineOptimizer(self.inner_opt)
            main_program = loss.block.program
            main_program._pipeline_opt = dict()
            pp_rank = self.role_maker._worker_index(
            ) // self.user_defined_strategy.sharding_configs[
                'sharding_group_size']
            main_program._pipeline_opt['local_rank'] = pp_rank
            main_program._pipeline_opt[
                'global_rank'] = self.role_maker._worker_index()
            main_program._pipeline_opt['use_sharding'] = True
            main_program._pipeline_opt['ring_id'] = 1
            optimize_ops, params_grads, program_list = pp_optimizer.minimize(
                loss, startup_program, parameter_list, no_grad_set)
            self.pipeline_nodes = len(program_list)
        else:
            optimize_ops, params_grads = self.inner_opt.minimize(
                loss, startup_program, parameter_list, no_grad_set)
116 117 118

        if startup_program is None:
            startup_program = default_startup_program()
S
update  
sandyhouse 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        if self.use_pipeline:
            startup_program = startup_program._pipeline_opt['startup_program']
            #main_program = main_program._pipeline_opt['section_program']['program']
            print("pp_rank:", pp_rank)
            main_program = program_list[pp_rank]['program']
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))
            main_block = main_program.global_block()
            new_params_grads = []
            for param, grad in params_grads:
                if main_block.has_var(param.name):
                    new_params_grads.append((param, grad))
            params_grads = new_params_grads

        else:
            main_block = loss.block
135 136 137 138
        startup_block = startup_program.global_block()
        self._main_program = main_block.program
        self._startup_program = startup_program

S
update  
sandyhouse 已提交
139 140 141
        if self.use_pipeline:
            pp_optimizer._rename_gradient_var_name(main_block)

142 143 144 145 146 147 148 149 150 151 152 153
        # step1: set_up
        self._set_up(params_grads)

        # step2: split_program
        self._split_program(main_block)

        # step3: add broadcast and reduce ops
        self._add_broadcast_allreduce(main_block)
        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()

        # step4: insert reduce_sum for grad
S
update  
sandyhouse 已提交
154 155 156 157 158 159 160
        # grad_scale_coeff = self.role_maker._worker_num()
        # if self._as_outer_parallelism:
        #     grad_scale_coeff = grad_scale_coeff / self._inner_parallelism_size
        # insert_scale_loss_grad_ops(main_block, scale=1.0 / grad_scale_coeff)
        sharding_group_size = self.user_defined_strategy.sharding_configs[
            'sharding_group_size']
        insert_scale_loss_grad_ops(main_block, scale=1.0 / sharding_group_size)
161 162 163 164 165
        main_block._sync_with_cpp()

        # step5: remove unneeded ops and vars from block
        self._prune_main_program(main_block)
        self._prune_startup_program(startup_block)
S
update  
sandyhouse 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
        if self.hybrid_dp:
            self._initialization_broadcast(startup_program)

        if self.use_pipeline:
            # crop ops
            for idx, op in reversed(list(enumerate(main_block.ops))):
                # if op.type == 'fill_constant' and int(op.attr('op_role')) == 16:
                #     out_name = op.output_arg_names[0]
                #     if not 'GRAD' in out_name: continue
                #     param_name = out_name.strip("@GRAD")
                #     #if main_block.has_var(out_name): continue
                #     if self._shard.has_param(param_name): continue
                #     main_block._remove_op(idx)
                if is_update_op(op):
                    op_role_var = op.attr('op_role_var')
                    param_name = op_role_var[0]
                    if not self._shard.has_param(param_name):
                        main_block._remove_op(idx)

            param_list = []
            for param_name, grad_name in params_grads:
                if self._shard.has_param(param_name):
                    param_list.append(param_name)
            #pp_optimizer._clear_gradients(main_block, param_list) 
            pp_optimizer._accumulate_gradients(main_block)
            #if not self._shard.has_param(param_name): continue
            ##if not main_block.has_var(grad_name): continue
            #assert main_block.has_var(grad_name)
            #grad_var = main_block.vars[grad_name]
            #grad_var.persistable = True
            #main_block._insert_op(
            #    index=0,
            #    type='fill_constant',
            #    inputs={},
            #    outputs={'Out': [grad_var]},
            #    attrs={
            #        'shape': grad_var.shape,
            #        'dtype': grad_var.dtype,
            #        'value': float(0),
            #        #self._op_device_key: device,
            #        # a trick to run this op once per mini-batch
            #        'op_role': core.op_proto_and_checker_maker.OpRole.LRSched,
            #    })

        #def _create_var(block, ref_var, name):
        #    """
        #    Create a new var for block, which has the same type,
        #    shape and dtype as ref_var, then rename it with the
        #    name `name`.
        #    """
        #    new_var = block.create_var(
        #        name=name,
        #        shape=ref_var.shape,
        #        dtype=ref_var.dtype,
        #        type=ref_var.type,
        #        lod_level=ref_var.lod_level,
        #        persistable=ref_var.persistable,
        #        is_data=ref_var.is_data,
        #        need_check_feed=ref_var.desc.need_check_feed())
        #    new_var.stop_gradient = ref_var.stop_gradient
        #    return new_var

        #def _rename_arg(op, old_name, new_name):
        #    op_desc = op.desc
        #    if isinstance(op_desc, tuple):
        #        op_desc = op_desc[0]
        #    op_desc._rename_input(old_name, new_name)
        #    op_desc._rename_output(old_name, new_name)

        #print("params_grads:", params_grads)
        #for param_name, grad_name in params_grads:
        #    if not self._shard.has_param(param_name): continue
        #    #if not main_block.has_var(grad_name): continue
        #    assert main_block.has_var(grad_name)
        #    use_fp16 = False
        #    fp16_grad_name = param_name + '.cast_fp16@GRAD'
        #    if main_block.has_var(grad_name):
        #        fp16_grad_var = main_block.vars[fp16_grad_name]
        #        use_fp16 = True
        #    grad_var = main_block.vars[grad_name]
        #    if use_fp16:
        #        cast_grad_var_name = paddle.fluid.unique_name.generate(
        #            grad_name)
        #        cast_var = _create_var(main_block, fp16_grad_var,
        #                               cast_grad_var_name)
        #        cast_var.persistable = False
        #        main_block.append_op(
        #            #index=offset + 1,
        #            type='cast',
        #            inputs={'X': grad_var},
        #            outputs={'Out': cast_var},
        #            attrs={
        #                'in_dtype': grad_var.dtype,
        #                'out_dtype': cast_var.dtype,
        #                'op_role':
        #                core.op_proto_and_checker_maker.OpRole.Backward,
        #            })
        #        #offset += 1
        #        main_block.append_op(
        #            #index=offset + 1,
        #            type='sum',
        #            inputs={'X': [fp16_grad_var, cast_var]},
        #            outputs={'Out': fp16_grad_var},
        #            attrs={
        #                'op_role':
        #                core.op_proto_and_checker_maker.OpRole.Backward,
        #                'op_role_var': op_role_var
        #            })

        # for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
        #     offset = index
        #     if is_backward_op(op) and (
        #             'op_role_var' in op.attr_names):
        #         op_role_var = op.all_attrs()['op_role_var']

        #         if len(op_role_var) == 0:
        #             continue
        #         assert len(op_role_var) % 2 == 0
        #         offset = index
        #         for i in range(0, len(op_role_var), 2):
        #             grad_name = op_role_var[i + 1]
        #             if not main_block.has_var(grad_name): continue
        #             grad_var = main_block.vars[grad_name]
        #             if not 'cast_fp16' in grad_name:
        #                 new_grad_var_name = paddle.fluid.unique_name.generate(grad_name)
        #                 new_var = _create_var(main_block, grad_var,
        #                                            new_grad_var_name)
        #                 new_var.persistable = False
        #                 _rename_arg(op, grad_name, new_grad_var_name)
        #                 main_block._insert_op(
        #                     index=offset + 1,
        #                     type='sum',
        #                     inputs={'X': [grad_var, new_var]},
        #                     outputs={'Out': grad_var},
        #                     attrs={
        #                         'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
        #                         'op_role_var': op_role_var
        #                     })
        #                 offset += 1
        #             if 'cast_fp16' in grad_name:
        #                 param_name = op_role_var[i]
        #                 fp32_grad_var_name = param_name + "@GRAD"
        #                 fp32_grad_var = main_block.vars[grad_name]
        #                 cast_grad_var_name = paddle.fluid.unique_name.generate(
        #                     fp32_grad_var_name)
        #                 cast_var = _create_var(main_block, grad_var,
        #                                             cast_grad_var_name)
        #                 cast_var.persistable = False
        #                 main_block._insert_op(
        #                     index=offset + 1,
        #                     type='cast',
        #                     inputs={'X': fp32_grad_var},
        #                     outputs={'Out': cast_var},
        #                     attrs={
        #                         'in_dtype': fp32_grad_var.dtype,
        #                         'out_dtype': cast_var.dtype,
        #                         'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
        #                         # self._op_role_var_key: op_role_var
        #                     })
        #                 offset += 1
        #                 main_block._insert_op(
        #                     index=offset + 1,
        #                     type='sum',
        #                     inputs={'X': [grad_var, cast_var]},
        #                     outputs={'Out': grad_var},
        #                     attrs={
        #                         'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
        #                         'op_role_var': op_role_var})
        main_block._sync_with_cpp()

        with open("start_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(startup_block.program))
        with open("main_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(main_block.program))
342 343 344

        # check op dependecy
        check_broadcast(main_block)
S
update  
sandyhouse 已提交
345 346 347
        check_allreduce_sum(main_block, self._shard, self.sharding_ring_id,
                            self.dp_ring_id)
        #check_allreduce_sum(main_block, self._shard, self.dp_ring_id)
348 349 350 351 352
        self._wait()
        return optimize_ops, params_grads

    def _set_up(self, params_grads):
        # step 1: initialize nccl
353 354 355 356
        self.global_word_size = self.role_maker._worker_num()
        self.global_rank = self.role_maker._worker_index()
        self.endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.endpoints[self.global_rank]
357
        self._collective_helper = CollectiveHelper(self.role_maker,
358 359 360 361 362 363 364 365
                                                   self._nrings_sharding)
        # config sharding & dp groups
        self._init_comm()
        # sharding
        self._collective_helper._init_communicator(
            self._startup_program, self.current_endpoint,
            self.sharding_group_endpoints, self.sharding_rank,
            self.sharding_ring_id, True)
S
update  
sandyhouse 已提交
366 367 368 369 370 371 372

        # inner & outer model parallelism
        if self._as_outer_parallelism:
            self._collective_helper._init_communicator(
                self._startup_program, self.current_endpoint,
                self.mp_group_endpoints, self.mp_rank, self.mp_group_id, True)

373 374
        # dp
        if self.hybrid_dp:
375
            self._collective_helper._init_communicator(
376 377
                self._startup_program, self.current_endpoint,
                self.dp_group_endpoints, self.dp_rank, self.dp_ring_id, True)
S
update  
sandyhouse 已提交
378 379 380 381 382
        # pp
        if self.use_pipeline:
            self._collective_helper._init_communicator(
                self._startup_program, self.current_endpoint,
                self.pp_group_endpoints, self.pp_rank, self.pp_ring_id, True)
383

384 385 386 387 388
        startup_block = self._startup_program.global_block()
        startup_block._sync_with_cpp()

        # step 2: split params
        self._params = set([x[0].name for x in params_grads])
389 390
        self._shard.setup(params_grads, self.sharding_rank,
                          self.sharding_group_size)
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

        # step 3: get broadcast vars
        self._broadcast_vars = self._shard.find_broadcast_params(
            self._main_program.global_block())

    def _wait(self, ):
        endpoints = self.role_maker._get_trainer_endpoints()
        current_endpoint = endpoints[self.role_maker._worker_index()]
        if self.role_maker._worker_index() == 0:
            self._collective_helper._wait(current_endpoint, endpoints)

    def _split_program(self, block):
        for op_idx, op in reversed(list(enumerate(block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                last_backward_op_idx = op_idx + 1
                break
        segment = ProgramSegment(block)
        segment._end_idx = last_backward_op_idx
        for op_idx in reversed(range(last_backward_op_idx)):
            op = block.ops[op_idx]
            assert (int(op.attr('op_role')) != int(OpRole.Optimize))
            if segment._param_mem >= self._fuse_broadcast_MB:
                segment._start_idx = op_idx + 1
                self._segments.insert(0, segment)
                segment = ProgramSegment(block)
                segment._end_idx = op_idx + 1

            # find broadcast vars
            for input_name in op.desc.input_arg_names():
                if input_name not in self._broadcast_vars:
                    continue
                if input_name in segment._param2broadcast:
                    # skip broadcast because it reuse the old broadcast var
                    broadcast_name = segment._param2broadcast[input_name]
                    if input_name != broadcast_name:
                        op._rename_input(input_name, broadcast_name)
                    continue
                if self._shard.has_param(input_name):
                    broadcast_var_name = input_name
                else:
                    broadcast_var_name = unique_name.generate(input_name +
                                                              "@BroadCast")
                    segment._fill_constant_vars.append(broadcast_var_name)
                segment._param2broadcast[input_name] = broadcast_var_name
                segment._broadcast_vars.append((broadcast_var_name,
                                                self._shard.device(input_name)))
                segment._param_mem += get_var_size(
                    self._main_program.global_block().var(input_name))

            # find reduce vars
            if is_backward_op(op) and \
                    OP_ROLE_VAR_KEY in op.attr_names:
                op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                if len(op_role_var) != 0:
                    assert len(op_role_var) % 2 == 0
                    for i in range(0, len(op_role_var), 2):
                        param, reduced_grad = op_role_var[i], op_role_var[i + 1]
                        segment._allreduce_vars.append(reduced_grad)
S
update  
sandyhouse 已提交
449 450
                        #assert (
                        #    reduced_grad not in self._reduced_grads_to_param)
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
                        self._reduced_grads_to_param[reduced_grad] = param

            # find cast op
            if FP16Utils.is_fp16_cast_op(block, op, self._params):
                fp32_param = op.desc.input_arg_names()[0]
                fp16_param = op.desc.output_arg_names()[0]
                if self._shard.has_param(fp32_param):
                    segment._cast_ops[fp16_param] = fp32_param

        if segment._param_mem > 0:
            segment._start_idx = 0
            self._segments.insert(0, segment)
        return

    def _prune_main_program(self, block):
        """
        calculate deps from allredce op to optimize op,
        remove ops and vars not needed in this worker
469 470 471 472 473 474

        1. prune regularization (weight decay)
        2. prune cast_fp32_to_fp16; update amp_infine_checking
        3. prune gradient_clip related; update global_norm_sum
        4. prune optimizer op + param + gradient
            
475 476 477
        """
        weightdecay_helper = WeightDecayHelper()
        weightdecay_helper.prune_weight_decay(block, self._shard)
S
update  
sandyhouse 已提交
478 479 480 481 482
        # NOTE (JZ-LIANG) the sync of FoundInfinite should among one entire Model Parallelism
        # group. and each Data Parallelism group should have its own sync of FoundInfinite
        Model_Paramllelism_ring_id = self.sharding_ring_id
        if self._as_outer_parallelism:
            Model_Paramllelism_ring_id = self.mp_group_id
483
        FP16Utils.prune_fp16(block, self._shard, self._reduced_grads_to_param,
S
update  
sandyhouse 已提交
484 485
                             Model_Paramllelism_ring_id)
        gradientclip_helper = GradientClipHelper(Model_Paramllelism_ring_id)
486 487 488 489 490 491 492 493 494 495 496 497
        gradientclip_helper.prune_gradient_clip(block, self._shard)

        # build prog deps
        reduced_grads = []
        for idx, op in enumerate(block.ops):
            input_names = op.desc.input_arg_names()
            output_names = op.desc.output_arg_names()
            if op.type == "c_allreduce_sum":
                assert (len(output_names) == 1)
                output_name = output_names[0]
                reduced_grads.append(output_name)

498
        # prune optimizer state and param
499 500 501 502 503 504 505 506 507 508 509 510 511 512
        pruned_opti_vars = []
        for var_name in list(block.vars.keys()):
            if self._shard.is_opti_var(var_name) and \
              not self._shard.has_opt_var(var_name):
                pruned_opti_vars.append(var_name)
        program_deps = ProgramDeps(block, reduced_grads, pruned_opti_vars)

        # Init
        for var_name in program_deps._end_vars:
            program_deps._should_removed_var.add(var_name)

        # Prune
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type in [
S
update  
sandyhouse 已提交
513 514 515 516 517 518 519
                    "c_allreduce_sum",
                    "c_sync_comm_stream",
                    "c_calc_comm_stream",
                    "c_gen_nccl_id",
                    "c_comm_init",
                    'send_v2',
                    'recv_v2',
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
            ]:
                pass
            elif op.type == "conditional_block":
                assert (op.desc.has_attr("sub_block"))
                subblock_idx = op.desc.attr("sub_block").id
                subblock_deps = program_deps.get_sub_block_deps(subblock_idx)
                # only prune amp subblock
                if subblock_deps is None or not self._is_amp_subblock(op):
                    continue
                # init
                reversed_output_vars = []
                for output_name in op.desc.output("Out"):
                    if output_name in program_deps._should_removed_var:
                        subblock_deps._should_removed_var.add(output_name)
                        program_deps.crop_output_var_from_op(idx, output_name)
                    else:
                        reversed_output_vars.append(output_name)
                # prune
                for sub_op_idx, _ in reversed(
                        list(enumerate(subblock_deps._block.ops))):
                    if subblock_deps.should_remove_op(sub_op_idx):
                        subblock_deps.remove_op(sub_op_idx)
                reversed_input_vars = []
                for input_name in op.desc.input('Input'):
                    if input_name not in subblock_deps._should_removed_var:
                        reversed_input_vars.append(input_name)
                    else:
                        program_deps.crop_input_var_from_op(idx, input_name)
                op.desc.set_input('Input', reversed_input_vars)
                op.desc.set_output('Out', reversed_output_vars)
            else:
551 552
                # if all outputs of this op are in _should_removed_var
                # _should_removed_var: opt state not cur shard
553 554 555 556
                if program_deps.should_remove_op(idx):
                    program_deps.remove_op(idx)

        block._sync_with_cpp()
S
update  
sandyhouse 已提交
557 558 559 560 561 562 563 564
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type == 'concat' and is_optimizer_op(op):
                # remove inputs that not on this card
                reserved_x = []
                for var_name in op.desc.input("X"):
                    if block.has_var(var_name): reserved_x.append(var_name)
                op.desc.set_input('X', reserved_x)
        block._sync_with_cpp()
565 566 567 568 569 570 571 572
        return

    def _add_broadcast_allreduce(self, block):
        """
        _add_broadcast_allreduce
        """
        if len(self._segments) < 1:
            return
573
        # sharding
574
        if self._segments[-1]._allreduce_vars:
575 576 577 578 579 580 581
            shard_allredue_vars = self._shard.filter_grads(self._segments[-1]
                                                           ._allreduce_vars)
            if self.hybrid_dp and len(shard_allredue_vars) >= 1:
                insert_sync_comm_ops(block, self._segments[-1]._end_idx,
                                     self.dp_ring_id, shard_allredue_vars)
                insert_allreduce_ops(block, self._segments[-1]._end_idx,
                                     self.dp_ring_id, shard_allredue_vars)
582
            insert_sync_comm_ops(block, self._segments[-1]._end_idx,
583
                                 self.sharding_ring_id,
584 585
                                 self._segments[-1]._allreduce_vars)
            insert_allreduce_ops(block, self._segments[-1]._end_idx,
586
                                 self.sharding_ring_id,
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
                                 self._segments[-1]._allreduce_vars)

        for idx, segment in reversed(list(enumerate(self._segments))):
            allreduce_vars = self._segments[
                idx - 1]._allreduce_vars if idx > 0 else []
            broadcast_vars = self._segments[idx +
                                            1]._broadcast_vars if idx < len(
                                                self._segments) - 1 else []
            fill_constant_vars = self._segments[
                idx + 2]._fill_constant_vars if idx < len(
                    self._segments) - 2 else []
            cast_ops = self._segments[idx + 2]._cast_ops if idx < len(
                self._segments) - 2 else {}

            for op_idx in reversed(range(segment._start_idx, segment._end_idx)):
                op = block.ops[op_idx]
                for input_name in op.desc.input_arg_names():
                    if input_name in segment._param2broadcast and \
                        input_name != segment._param2broadcast[input_name]:
                        op._rename_input(input_name,
                                         segment._param2broadcast[input_name])

            for param_name, broadcast_name in segment._param2broadcast.items():
                if param_name != broadcast_name:
                    block.create_var(
                        name=broadcast_name,
                        shape=self._main_program.global_block().var(
                            param_name).shape,
                        dtype=self._main_program.global_block().var(param_name)
                        .dtype,
                        persistable=False)

            # step1: remove cast ops
            block._sync_with_cpp()
            segment._end_idx += FP16Utils.remove_cast_op(block, self._params,
                                                         segment, 0)

            # step2: add Sync ops
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
            shard_allredue_vars = self._shard.filter_grads(allreduce_vars)
            if self.hybrid_dp and len(shard_allredue_vars) >= 1:
                insert_sync_comm_ops(block, segment._end_idx, self.dp_ring_id,
                                     shard_allredue_vars)

                broad_cast_vars = [x[0] for x in broadcast_vars]
                if len(broad_cast_vars) > 0:
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.sharding_ring_id, broad_cast_vars)
            else:
                comm_dep_vars = allreduce_vars + [x[0] for x in broadcast_vars]
                if len(comm_dep_vars) > 0:
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.sharding_ring_id, comm_dep_vars)

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
            calc_dep_vars = fill_constant_vars + [
                k for k, v in cast_ops.items()
            ] + self._segments[idx]._allreduce_vars

            if len(calc_dep_vars) > 0:
                insert_sync_calc_op(block, segment._end_idx,
                                    [calc_dep_vars[-1]])

            # step3: insert `fill_constant` ops 
            insert_fill_constant_ops(block, segment._end_idx,
                                     fill_constant_vars)

            # step4: add `cast` ops     
            insert_cast_ops(block, segment._end_idx, cast_ops)

            # step5: add broadcast ops
656 657
            insert_broadcast_ops(block, segment._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
658
            # step6: add all_reduce ops
659 660 661 662 663 664 665 666 667
            # dp
            if self.hybrid_dp and len(shard_allredue_vars) >= 1:
                insert_allreduce_ops(block, segment._start_idx, self.dp_ring_id,
                                     shard_allredue_vars)
                insert_sync_comm_ops(block, segment._start_idx,
                                     self.sharding_ring_id, allreduce_vars)
            # sharding
            insert_allreduce_ops(block, segment._start_idx,
                                 self.sharding_ring_id, allreduce_vars)
668 669 670 671

            block._sync_with_cpp()

        if self._segments[0]._broadcast_vars:
672 673 674
            broadcast_vars = [x[0] for x in self._segments[0]._broadcast_vars]
            insert_sync_comm_ops(block, self._segments[0]._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
675
            insert_broadcast_ops(block, self._segments[0]._start_idx,
676
                                 self.sharding_ring_id,
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
                                 self._segments[0]._broadcast_vars)

        fill_constant_vars = []
        for x in self._segments[:2]:
            fill_constant_vars += x._fill_constant_vars

        # Join
        cast_ops = {}
        for x in self._segments[:2]:
            for k, v in x._cast_ops.items():
                cast_ops[k] = v

        calc_deps_vars = fill_constant_vars + [k for k, v in cast_ops.items()]
        if fill_constant_vars or cast_ops:
            insert_sync_calc_op(block, self._segments[0]._start_idx,
                                [calc_deps_vars[-1]])

        if fill_constant_vars:
            insert_fill_constant_ops(block, self._segments[0]._start_idx,
                                     fill_constant_vars)

        if cast_ops:
            insert_cast_ops(block, self._segments[0]._start_idx, cast_ops)

        return

    def _prune_startup_program(self, block):
        for idx, op in reversed(list(enumerate(block.ops))):
            for output_name in op.desc.output_arg_names():
                if self._shard.has_var(output_name):
                    continue
                #TODO why do we remove op, when only one var is removed
                block._remove_op(idx, sync=False)
                break

        for var_name in list(block.vars.keys()):
            if self._shard.has_var(var_name):
                continue
            block._remove_var(var_name, sync=False)
        block._sync_with_cpp()
717 718 719 720

    def _init_comm(self):

        if self.hybrid_dp:
S
update  
sandyhouse 已提交
721
            assert self._as_outer_parallelism == False, "hybrid dp is conflict when using sharding as outer parallelism"
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
            self.sharding_group_size = self.user_defined_strategy.sharding_configs[
                "sharding_group_size"]
            self.sharding_ring_id = 0
            self.sharding_rank = self.global_rank % self.sharding_group_size

            self.dp_group_size = self.global_word_size // self.sharding_group_size
            self.dp_rank = self.global_rank // self.sharding_group_size
            self.dp_ring_id = self.sharding_rank + 1

            self.sharding_group_endpoints = [
                ep for idx, ep in enumerate(self.endpoints)
                if (idx // self.sharding_group_size) == self.dp_rank
            ]
            self.dp_group_endpoints = [
                ep for idx, ep in enumerate(self.endpoints)
                if (idx % self.sharding_group_size) == self.sharding_rank
            ]
            assert self.global_word_size > self.sharding_group_size, \
                "global_word_size: {} should be larger than sharding_group_size: {}".format(self.global_word_size, self.sharding_group_size)
            assert self.global_word_size % self.sharding_group_size == 0, \
                "global_word_size: {} should be divisible to the sharding_group_size: {}".format(self.global_word_size, self.sharding_group_size)
            assert self.dp_group_size *  self.sharding_group_size == self.global_word_size, \
                "global_word_size: {} should be equal to the product of sharding_group_size: {} and dp_group_size: {}".format(
                self.global_word_size,
                self.sharding_group_size,
                self.dp_group_size)
S
update  
sandyhouse 已提交
748 749 750 751 752 753 754 755 756 757
            self.pp_ring_id = -1
            self.pp_rank = -1
            self.pp_group_size = None
            self.pp_group_endpoints = None

            # sharding parallelism is the only model parallelism in the current setting
            self.mp_group_id = self.sharding_ring_id
            self.mp_rank = self.sharding_rank
            self.mp_group_size = self.sharding_group_size
            self.mp_group_endpoints = self.sharding_group_endpoints[:]
758 759 760

            logging.info("Using Sharing&DP mode !")
        else:
S
update  
sandyhouse 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
            if self._as_outer_parallelism:
                self.sharding_ring_id = 1
                assert self.global_word_size > self._inner_parallelism_size, \
                    "global_word_size: {} should be larger than inner_parallelism_size: {}".format(self.global_word_size, self._inner_parallelism_size)
                assert self.global_word_size % self._inner_parallelism_size == 0, \
                    "global_word_size: {} should be divisible to the inner_parallelism_size: {}".format(self.global_word_size, self._inner_parallelism_size)
                self.sharding_rank = self.global_rank // self._inner_parallelism_size
                self.sharding_group_size = self.role_maker._worker_num(
                ) // self._inner_parallelism_size
                _offset = self.global_rank % self._inner_parallelism_size
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.endpoints)
                    if idx % self._inner_parallelism_size == _offset
                ]

                # the current entire model parallelism group is the combination of innert & sharding parallelism
                self.mp_group_id = 2
                self.mp_rank = self.global_rank
                self.mp_group_size = self.role_maker._worker_num()
                self.mp_group_endpoints = self.endpoints[:]
                logging.info("Using Sharing as Outer parallelism mode !")

                # print(
                #     "init the nccl comm for megatron paramllelism, this should be done in Megatron Metaoptimizer"
                # )
                # partition_idx = self.global_rank // self._inner_parallelism_size
                # magetron_endpoints = self.endpoints[
                #     partition_idx * self._inner_parallelism_size:partition_idx *
                #     self._inner_parallelism_size + self._inner_parallelism_size]
                # magetron_rank = self.global_rank % self._inner_parallelism_size

                # self._collective_helper._init_communicator(
                #     program=self._startup_program,
                #     current_endpoint=self.current_endpoint,
                #     endpoints=magetron_endpoints,
                #     rank=magetron_rank,
                #     ring_id=0,
                #     wait_port=True)
                # logging.info("megatron group size: {}".format(
                #     self._inner_parallelism_size))
                # logging.info("megatron rank: {}".format(magetron_rank))
                # logging.info("megatron endpoints: {}".format(
                #     magetron_endpoints))
            if self.use_pipeline:
                self.sharding_ring_id = 0
                self.sharding_group_size = self.user_defined_strategy.sharding_configs[
                    'sharding_group_size']
                self.sharding_rank = self.global_rank % self.sharding_group_size
                assert self.sharding_group_size * self.pipeline_nodes == self.role_maker._worker_num(
                )
                self.pp_ring_id = 1
                self.pp_rank = self.global_rank // self.sharding_group_size
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.endpoints)
                    if (idx // self.sharding_group_size) == self.pp_rank
                ]
                self.pp_group_size = self.pipeline_nodes
                self.pp_group_endpoints = [
                    ep for idx, ep in enumerate(self.endpoints)
                    if (idx % self.sharding_group_size) == self.sharding_rank
                ]
                self.dp_ring_id = -1
                self.dp_rank = -1
                self.dp_group_size = None
                self.dp_group_endpoints = None

                logging.info("Using Sharing with pipeline !")
            else:
                self.sharding_ring_id = 0
                self.sharding_rank = self.global_rank
                self.sharding_group_size = self.role_maker._worker_num()
                self.sharding_group_endpoints = self.endpoints

                # sharding parallelism is the only model parallelism in the current setting
                self.mp_group_id = self.sharding_ring_id
                self.mp_rank = self.sharding_rank
                self.mp_group_size = self.sharding_group_size
                self.mp_group_endpoints = self.sharding_group_endpoints[:]

                logging.info("Using Sharing alone mode !")

            self.dp_ring_id = -1
            self.dp_rank = -1
            self.dp_group_size = None
            self.dp_group_endpoints = None

            self.pp_ring_id = -1
            self.pp_rank = -1
            self.pp_group_size = None
            self.pp_group_endpoints = None
851 852 853 854 855 856 857 858 859 860 861
            self.dp_ring_id = -1
            self.dp_rank = -1
            self.dp_group_size = None
            self.dp_group_endpoints = None

            logging.info("Using Sharing alone mode !")

        logging.info("global word size: {}".format(self.global_word_size))
        logging.info("global rank: {}".format(self.global_rank))
        logging.info("sharding group_size: {}".format(self.sharding_group_size))
        logging.info("sharding rank: {}".format(self.sharding_rank))
S
update  
sandyhouse 已提交
862 863 864
        logging.info("current model parallelism group_size: {}".format(
            self.mp_group_size))
        logging.info("current model parallelism rank: {}".format(self.mp_rank))
865 866 867
        logging.info("dp group size: {}".format(self.dp_group_size))
        logging.info("dp rank: {}".format(self.dp_rank))
        logging.info("current endpoint: {}".format(self.current_endpoint))
S
update  
sandyhouse 已提交
868
        logging.info("global word endpoints: {}".format(self.endpoints))
869 870
        logging.info("sharding group endpoints: {}".format(
            self.sharding_group_endpoints))
S
update  
sandyhouse 已提交
871 872
        logging.info("current model parallelism group endpoints: {}".format(
            self.mp_group_endpoints))
873 874 875
        logging.info("dp group endpoints: {}".format(self.dp_group_endpoints))

        return
S
update  
sandyhouse 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900

    def _initialization_broadcast(self, startup_prog):
        """
        this funtion is to ensure the initialization between dp group to be 
        identical when hybrid-dp is used.
        """
        block = startup_prog.global_block()
        params = []
        for param in block.iter_parameters():
            params.append(param)
            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': self.dp_ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })
        block.append_op(
            type='c_sync_comm_stream',
            inputs={'X': params},
            outputs={'Out': params},
            attrs={'ring_id': self.dp_ring_id,
                   OP_ROLE_KEY: OpRole.Forward})