reduce_op.cc 6.9 KB
Newer Older
G
guosheng 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15

#include "paddle/operators/reduce_op.h"
G
guosheng 已提交
16
#include "paddle/operators/net_op.h"
G
guosheng 已提交
17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using framework::Tensor;

class ReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

27
  void InferShape(framework::InferShapeContext *ctx) const override {
28 29 30 31 32
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of ReduceOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of ReduceOp should not be null.");
    auto x_dims = ctx->GetInputDim("X");
G
guosheng 已提交
33
    auto x_rank = x_dims.size();
G
guosheng 已提交
34
    PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported.");
35
    int dim = ctx->Attrs().Get<int>("dim");
G
guosheng 已提交
36 37 38
    if (dim < 0) dim = x_rank + dim;
    PADDLE_ENFORCE_LT(
        dim, x_rank,
G
guosheng 已提交
39
        "The dim should be in the range [-rank(input), rank(input)).");
40 41 42
    bool reduce_all = ctx->Attrs().Get<bool>("reduce_all");
    if (reduce_all) {
      ctx->SetOutputDim("Out", {1});
G
guosheng 已提交
43
    } else {
44 45 46 47 48 49 50 51 52 53 54 55 56
      bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
      auto dims_vector = vectorize(x_dims);
      if (keep_dim || x_rank == 1) {
        dims_vector[dim] = 1;
      } else {
        dims_vector.erase(dims_vector.begin() + dim);
      }
      auto out_dims = framework::make_ddim(dims_vector);
      ctx->SetOutputDim("Out", out_dims);
      if (dim != 0) {
        // Only pass LoD when not reducing on the first dim.
        ctx->ShareLoD("X", /*->*/ "Out");
      }
57
    }
G
guosheng 已提交
58 59 60 61 62 63 64
  }
};

class ReduceGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

65
  void InferShape(framework::InferShapeContext *ctx) const override {
66 67 68 69
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null.");
    auto x_dims = ctx->GetInputDim("X");
G
guosheng 已提交
70
    auto x_rank = x_dims.size();
G
guosheng 已提交
71
    PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported.");
72
    int dim = ctx->Attrs().Get<int>("dim");
G
guosheng 已提交
73 74 75
    if (dim < 0) dim = x_rank + dim;
    PADDLE_ENFORCE_LT(
        dim, x_rank,
G
guosheng 已提交
76
        "The dim should be in the range [-rank(input), rank(input)).");
77 78 79
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
80
      ctx->ShareLoD("X", /*->*/ x_grad_name);
81
    }
G
guosheng 已提交
82 83 84
  }
};

G
guosheng 已提交
85
class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
G
guosheng 已提交
86
 public:
87
  ReduceOpMaker(OpProto *proto, OpAttrChecker *op_checker)
G
guosheng 已提交
88
      : OpProtoAndCheckerMaker(proto, op_checker) {
K
kexinzhao 已提交
89 90 91
    AddInput("X",
             "(Tensor) The input tensor. Tensors with rank at most 6 are "
             "supported.");
G
guosheng 已提交
92
    AddOutput("Out", "(Tensor) The result tensor.");
93 94
    AddAttr<int>(
        "dim",
K
kexinzhao 已提交
95
        "(int, default 0) The dimension to reduce. "
96 97
        "Must be in the range [-rank(input), rank(input)). "
        "If `dim < 0`, the dim to reduce is `rank + dim`. "
K
kexinzhao 已提交
98
        "Note that reducing on the first dim will make the LoD info lost.")
99
        .SetDefault(0);
G
guosheng 已提交
100 101 102 103
    AddAttr<bool>("keep_dim",
                  "(bool, default false) "
                  "If true, retain the reduced dimension with length 1.")
        .SetDefault(false);
104 105 106 107
    AddAttr<bool>("reduce_all",
                  "(bool, default false) "
                  "If true, output a scalar reduced along all dimensions.")
        .SetDefault(false);
G
guosheng 已提交
108
    comment_ = R"DOC(
K
kexinzhao 已提交
109 110 111 112
{ReduceOp} Operator.

This operator computes the {reduce} of input tensor along the given dimension. 
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
113
If reduce_all is true, just reduce along all dimensions and output a scalar.
K
kexinzhao 已提交
114

G
guosheng 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
)DOC";
    AddComment(comment_);
  }

 protected:
  std::string comment_;

  void Replace(std::string &src, std::string from, std::string to) {
    std::size_t len_from = std::strlen(from.c_str());
    std::size_t len_to = std::strlen(to.c_str());
    for (std::size_t pos = src.find(from); pos != std::string::npos;
         pos = src.find(from, pos + len_to)) {
      src.replace(pos, len_from, to);
    }
  }

  void SetComment(std::string name, std::string op) {
132
    Replace(comment_, "{ReduceOp}", name);
G
guosheng 已提交
133
    Replace(comment_, "{reduce}", op);
G
guosheng 已提交
134 135 136
  }
};

G
guosheng 已提交
137 138
class ReduceSumOpMaker : public ReduceOpMaker {
 public:
139
  ReduceSumOpMaker(OpProto *proto, OpAttrChecker *op_checker)
G
guosheng 已提交
140 141 142 143 144 145 146
      : ReduceOpMaker(proto, op_checker) {
    SetComment("ReduceSum", "sum");
    AddComment(comment_);
  }
};

class ReduceMeanOpMaker : public ReduceOpMaker {
G
guosheng 已提交
147
 public:
148
  ReduceMeanOpMaker(OpProto *proto, OpAttrChecker *op_checker)
G
guosheng 已提交
149 150 151
      : ReduceOpMaker(proto, op_checker) {
    SetComment("ReduceMean", "mean");
    AddComment(comment_);
G
guosheng 已提交
152 153 154
  }
};

G
guosheng 已提交
155
class ReduceMaxOpMaker : public ReduceOpMaker {
G
guosheng 已提交
156
 public:
157
  ReduceMaxOpMaker(OpProto *proto, OpAttrChecker *op_checker)
G
guosheng 已提交
158 159 160
      : ReduceOpMaker(proto, op_checker) {
    SetComment("ReduceMax", "max");
    AddComment(comment_);
G
guosheng 已提交
161 162 163
  }
};

G
guosheng 已提交
164
class ReduceMinOpMaker : public ReduceOpMaker {
G
guosheng 已提交
165
 public:
166
  ReduceMinOpMaker(OpProto *proto, OpAttrChecker *op_checker)
G
guosheng 已提交
167 168 169
      : ReduceOpMaker(proto, op_checker) {
    SetComment("ReduceMin", "min");
    AddComment(comment_);
G
guosheng 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(reduce_sum, ops::ReduceOp, ops::ReduceSumOpMaker, reduce_sum_grad,
            ops::ReduceGradOp);

REGISTER_OP(reduce_mean, ops::ReduceOp, ops::ReduceMeanOpMaker,
            reduce_mean_grad, ops::ReduceGradOp);

REGISTER_OP(reduce_max, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_max_grad,
            ops::ReduceGradOp);

L
Luo Tao 已提交
187
REGISTER_OP(reduce_min, ops::ReduceOp, ops::ReduceMinOpMaker, reduce_min_grad,
G
guosheng 已提交
188
            ops::ReduceGradOp);
G
guosheng 已提交
189

Q
QI JUN 已提交
190 191 192 193 194 195 196 197
#define REGISTER_REDUCE_CPU_KERNEL(reduce_type, functor, grad_functor)         \
  REGISTER_OP_CPU_KERNEL(reduce_type,                                          \
                         ops::ReduceKernel<paddle::platform::CPUDeviceContext, \
                                           float, ops::functor>);              \
  REGISTER_OP_CPU_KERNEL(                                                      \
      reduce_type##_grad,                                                      \
      ops::ReduceGradKernel<paddle::platform::CPUDeviceContext, float,         \
                            ops::grad_functor>);
198 199

FOR_EACH_KERNEL_FUNCTOR(REGISTER_REDUCE_CPU_KERNEL);