reduce_op.cc 8.1 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/reduce_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;
using framework::DDim;

class ReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
    auto x_dims = ctx.Input<Tensor>("X")->dims();
    auto x_rank = x_dims.size();
    PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported");
33
    int dim = ctx.Attr<int>("dim");
G
guosheng 已提交
34 35 36
    if (dim < 0) dim = x_rank + dim;
    PADDLE_ENFORCE_LT(
        dim, x_rank,
37 38 39 40
        "The dim should be in the range [-rank(input), rank(input))");
    PADDLE_ENFORCE_GE(ctx.Attr<int>("keep_dim"), 0, "keep_dim must be 0 or 1");
    PADDLE_ENFORCE_LE(ctx.Attr<int>("keep_dim"), 1, "keep_dim must be 0 or 1");
    bool keep_dim = ctx.Attr<int>("keep_dim") == 1;
G
guosheng 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    auto dims_vector = vectorize(x_dims);
    if (keep_dim || x_rank == 1) {
      dims_vector[dim] = 1;
    } else {
      dims_vector.erase(dims_vector.begin() + dim);
    }
    auto out_dims = framework::make_ddim(dims_vector);
    ctx.Output<Tensor>("Out")->Resize(out_dims);
  }
};

class ReduceGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
                            "Input(Out@GRAD) should not be null");
    auto x_dims = ctx.Input<Tensor>("X")->dims();
    auto x_rank = x_dims.size();
    PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported");
64
    int dim = ctx.Attr<int>("dim");
G
guosheng 已提交
65 66 67
    if (dim < 0) dim = x_rank + dim;
    PADDLE_ENFORCE_LT(
        dim, x_rank,
68
        "The dim should be in the range [-rank(input), rank(input))");
G
guosheng 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    if (x_grad) x_grad->Resize(x_dims);
  }
};

class ReduceSumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ReduceSumOpMaker(framework::OpProto *proto,
                   framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
        "(Tensor) The input tensor. Tensors with rank at most 6 are supported");
    AddOutput("Out", "(Tensor) The result tensor.");
    AddComment(R"DOC(
ReduceMean operator computes the sum of input tensor along the given dimension. 
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
)DOC");
    AddAttr<int>("dim",
                 "(int, default 0) The dimension to reduce. "
89 90 91 92 93 94
                 "Must be in the range [-rank(input), rank(input))")
        .SetDefault(0);
    AddAttr<int>(
        "keep_dim",
        "(int, default 0) "
        "Must be 0 or 1. If 1, retain the reduced dimension with length 1.")
G
guosheng 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
        .SetDefault(0);
  }
};

class ReduceMeanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ReduceMeanOpMaker(framework::OpProto *proto,
                    framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
        "(Tensor) The input tensor. Tensors with rank at most 6 are supported");
    AddOutput("Out", "(Tensor) The result tensor.");
    AddComment(R"DOC(
ReduceMean operator computes the mean of input tensor along the given dimension. 
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
)DOC");
    AddAttr<int>("dim",
                 "(int, default 0) The dimension to reduce. "
114 115 116 117 118 119
                 "Must be in the range [-rank(input), rank(input))")
        .SetDefault(0);
    AddAttr<int>(
        "keep_dim",
        "(int, default 0) "
        "Must be 0 or 1. If 1, retain the reduced dimension with length 1.")
G
guosheng 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
        .SetDefault(0);
  }
};

class ReduceMaxOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ReduceMaxOpMaker(framework::OpProto *proto,
                   framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
        "(Tensor) The input tensor. Tensors with rank at most 6 are supported");
    AddOutput("Out", "(Tensor) The result tensor.");
    AddComment(R"DOC(
ReduceMax operator computes the maximum of input tensor along the given dimension. 
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
)DOC");
    AddAttr<int>("dim",
                 "(int, default 0) The dimension to reduce. "
139 140 141 142 143 144
                 "Must be in the range [-rank(input), rank(input))")
        .SetDefault(0);
    AddAttr<int>(
        "keep_dim",
        "(int, default 0) "
        "Must be 0 or 1. If 1, retain the reduced dimension with length 1.")
G
guosheng 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        .SetDefault(0);
  }
};

class ReduceMinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ReduceMinOpMaker(framework::OpProto *proto,
                   framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
        "(Tensor) The input tensor. Tensors with rank at most 6 are supported");
    AddOutput("Out", "(Tensor) The result tensor.");
    AddComment(R"DOC(
ReduceMin operator computes the minimum of input tensor along the given dimension. 
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
)DOC");
    AddAttr<int>("dim",
                 "(int, default 0) The dimension to reduce. "
164 165 166 167 168 169
                 "Must be in the range [-rank(input), rank(input))")
        .SetDefault(0);
    AddAttr<int>(
        "keep_dim",
        "(int, default 0) "
        "Must be 0 or 1. If 1, retain the reduced dimension with length 1.")
G
guosheng 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        .SetDefault(0);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(reduce_sum, ops::ReduceOp, ops::ReduceSumOpMaker, reduce_sum_grad,
            ops::ReduceGradOp);
REGISTER_OP_CPU_KERNEL(
    reduce_sum,
    ops::ReduceKernel<paddle::platform::CPUPlace, float, ops::SumFunctor>);
REGISTER_OP_CPU_KERNEL(reduce_sum_grad,
                       ops::ReduceGradKernel<paddle::platform::CPUPlace, float,
                                             ops::SumGradFunctor>);

REGISTER_OP(reduce_mean, ops::ReduceOp, ops::ReduceMeanOpMaker,
            reduce_mean_grad, ops::ReduceGradOp);
REGISTER_OP_CPU_KERNEL(
    reduce_mean,
    ops::ReduceKernel<paddle::platform::CPUPlace, float, ops::MeanFunctor>);
REGISTER_OP_CPU_KERNEL(reduce_mean_grad,
                       ops::ReduceGradKernel<paddle::platform::CPUPlace, float,
                                             ops::MeanGradFunctor>);

REGISTER_OP(reduce_max, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_max_grad,
            ops::ReduceGradOp);
REGISTER_OP_CPU_KERNEL(
    reduce_max,
    ops::ReduceKernel<paddle::platform::CPUPlace, float, ops::MaxFunctor>);
REGISTER_OP_CPU_KERNEL(reduce_max_grad,
                       ops::ReduceGradKernel<paddle::platform::CPUPlace, float,
                                             ops::MaxOrMinGradFunctor>);

REGISTER_OP(reduce_min, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_min_grad,
            ops::ReduceGradOp);
REGISTER_OP_CPU_KERNEL(
    reduce_min,
    ops::ReduceKernel<paddle::platform::CPUPlace, float, ops::MinFunctor>);
REGISTER_OP_CPU_KERNEL(reduce_min_grad,
                       ops::ReduceGradKernel<paddle::platform::CPUPlace, float,
                                             ops::MaxOrMinGradFunctor>);