elementwise_add_op.cc 5.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
16

17
#include <string>
18

W
Wu Yi 已提交
19
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
20

W
wanghuancoder 已提交
21 22 23 24 25 26 27 28 29 30 31 32
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
class CPUDeviceContext;
}  // namespace platform
}  // namespace paddle

33 34 35
namespace paddle {
namespace operators {

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
class ElementwiseAddOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Add"; }
  std::string GetEquation() const override { return "Out = X + Y"; }

  void AddInputX() override {
    AddInput("X",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  void AddInputY() override {
    AddInput("Y",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  std::string GetOpFuntionality() const override {
    return "Add two tensors element-wise";
  }
};

H
hong 已提交
58 59
template <typename T>
class ElementwiseAddDoubleGradMaker : public framework::SingleGradOpMaker<T> {
60
 public:
H
hong 已提交
61
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
62 63

 protected:
64
  void Apply(GradOpPtr<T> op) const override {
65
    op->SetType("elementwise_add_grad_grad");
H
hong 已提交
66 67 68 69
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
70

H
hong 已提交
71
    op->SetAttrMap(this->Attrs());
72

H
hong 已提交
73
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
74 75 76
  }
};

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
template <typename T>
class ElementwiseAddTripleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("elementwise_add_triple_grad");
    op->SetInput("DDX", this->Input("DDX"));
    op->SetInput("DDY", this->Input("DDY"));
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));

    op->SetAttrMap(this->Attrs());

    op->SetOutput("D_DDX", this->InputGrad("DDX"));
    op->SetOutput("D_DDY", this->InputGrad("DDY"));
  }
};

96 97 98
}  // namespace operators
}  // namespace paddle

99
REGISTER_ELEMWISE_GRAD_MAKER(elementwise_add, Add);
100
REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(elementwise_add, Add);
101 102

namespace ops = paddle::operators;
H
hong 已提交
103
REGISTER_OPERATOR(
104 105
    elementwise_add_grad, ops::ElementwiseOpGrad,
    ops::ElementwiseGradOpInplaceInferer, ops::ElementwiseGradNoBufVarsInferer,
H
hong 已提交
106 107
    ops::ElementwiseAddDoubleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseAddDoubleGradMaker<paddle::imperative::OpBase>);
108

109 110 111 112 113 114 115 116 117 118
REGISTER_OPERATOR(
    elementwise_add_grad_grad, ops::ElementwiseOpDoubleGradWithoutDXDY,
    ops::ElementwiseDoubleGradOpInplaceInferer,
    ops::ElementwiseDoubleGradNoBufVarsInferer,
    ops::ElementwiseAddTripleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseAddTripleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(elementwise_add_triple_grad, ops::ElementwiseOpTripleGrad,
                  ops::ElementwiseTripleGradOpInplaceInferer,
                  ops::ElementwiseTripleGradNoBufVarsInferer);
D
dzhwinter 已提交
119

120 121 122 123 124 125 126 127 128 129 130 131 132
// A specialization elementwise_add operator, used in gradient accumulation with
// inplace addto.
REGISTER_OPERATOR(
    grad_add, paddle::operators::ElementwiseOp,
    paddle::operators::ElementwiseAddOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OP_CPU_KERNEL(
    grad_add,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, int>,
133 134
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext,
135
                              paddle::platform::complex<float>>,
136
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext,
137
                              paddle::platform::complex<double>>);
138 139 140 141 142 143 144 145 146 147

REGISTER_OP_VERSION(elementwise_add)
    .AddCheckpoint(
        R"ROC(Register elementwise_add for adding the attribute of
       Scale_y)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "Scale_y",
            "In order to support the function of scaling the input Y when "
            "using the operator of elementwise_add.",
            1.0f));