elementwise_add_op.cc 6.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
16

17 18
#include <memory>
#include <string>
19 20

#include "paddle/fluid/framework/op_version_registry.h"
W
Wu Yi 已提交
21
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
22

W
wanghuancoder 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
class CPUDeviceContext;
struct CPUPlace;
}  // namespace platform
}  // namespace paddle

36 37 38
namespace paddle {
namespace operators {

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
template <typename T>
struct SameDimsElemwiseAdd<
    platform::CPUDeviceContext, T,
    typename std::enable_if<std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    blas.VADD(x->numel(), x->data<T>(), y->data<T>(), z->data<T>());
  }
};

template <typename T>
struct SameDimsElemwiseAdd<
    platform::CPUDeviceContext, T,
    typename std::enable_if<!std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto eigen_x = framework::EigenVector<T>::Flatten(*x);
    auto eigen_y = framework::EigenVector<T>::Flatten(*y);
    auto eigen_z = framework::EigenVector<T>::Flatten(*z);
    auto &place = *ctx.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
    eigen_z.device(place) = eigen_x + eigen_y;
  }
};

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
class ElementwiseAddOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Add"; }
  std::string GetEquation() const override { return "Out = X + Y"; }

  void AddInputX() override {
    AddInput("X",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  void AddInputY() override {
    AddInput("Y",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  std::string GetOpFuntionality() const override {
    return "Add two tensors element-wise";
  }
};

H
hong 已提交
89 90
template <typename T>
class ElementwiseAddDoubleGradMaker : public framework::SingleGradOpMaker<T> {
91
 public:
H
hong 已提交
92
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
93 94

 protected:
95
  void Apply(GradOpPtr<T> op) const override {
96
    op->SetType("elementwise_add_grad_grad");
H
hong 已提交
97 98 99 100
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
101

H
hong 已提交
102
    op->SetAttrMap(this->Attrs());
103

H
hong 已提交
104
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
105 106 107 108 109 110
  }
};

}  // namespace operators
}  // namespace paddle

111
REGISTER_ELEMWISE_GRAD_MAKER(elementwise_add, Add);
112
REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(elementwise_add, Add);
113 114

namespace ops = paddle::operators;
H
hong 已提交
115
REGISTER_OPERATOR(
116 117
    elementwise_add_grad, ops::ElementwiseOpGrad,
    ops::ElementwiseGradOpInplaceInferer, ops::ElementwiseGradNoBufVarsInferer,
H
hong 已提交
118 119
    ops::ElementwiseAddDoubleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseAddDoubleGradMaker<paddle::imperative::OpBase>);
120

121
REGISTER_OPERATOR(elementwise_add_grad_grad,
122
                  ops::ElementwiseOpDoubleGradWithoutDXDY,
123 124
                  ops::ElementwiseDoubleGradOpInplaceInferer,
                  ops::ElementwiseDoubleGradNoBufVarsInferer);
D
dzhwinter 已提交
125

G
gongweibao 已提交
126 127
REGISTER_OP_CPU_KERNEL(
    elementwise_add,
Q
QI JUN 已提交
128 129 130 131
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, int64_t>);
G
gongweibao 已提交
132 133
REGISTER_OP_CPU_KERNEL(
    elementwise_add_grad,
Q
QI JUN 已提交
134 135 136 137
    ops::ElementwiseAddGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseAddGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseAddGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseAddGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
138 139 140 141 142 143 144 145 146 147
REGISTER_OP_CPU_KERNEL(
    elementwise_add_grad_grad,
    ops::ElementwiseAddDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseAddDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseAddDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseAddDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int64_t>);
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

// A specialization elementwise_add operator, used in gradient accumulation with
// inplace addto.
REGISTER_OPERATOR(
    grad_add, paddle::operators::ElementwiseOp,
    paddle::operators::ElementwiseAddOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OP_CPU_KERNEL(
    grad_add,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, int64_t>);