unpool_op.cc 5.8 KB
Newer Older
S
sweetsky0901 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
S
sweetsky0901 已提交
14 15 16 17 18 19 20

#include "paddle/operators/unpool_op.h"
namespace paddle {
namespace operators {

class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
S
sweetsky0901 已提交
21
  Unpool2dOpMaker(framework::OpProto* proto,
S
sweetsky0901 已提交
22
                  framework::OpAttrChecker* op_checker)
S
sweetsky0901 已提交
23
      : OpProtoAndCheckerMaker(proto, op_checker) {
S
sweetsky0901 已提交
24 25
    AddInput(
        "X",
S
sweetsky0901 已提交
26 27 28
        "(Tensor) The input tensor of unpool operator. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
29 30
    AddInput(
        "Indices",
S
sweetsky0901 已提交
31 32 33
        "(Tensor) The input tensor of the indices given out by MaxPool2d. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
34 35 36 37 38 39
    AddOutput("Out",
          "(Tensor) The output tensor of unpool operator."
          "The format of output tensor is also NCHW."
          "Where N is batch size, C is "
          "the number of channels, H and W is the height and "
          "width of feature.");
S
sweetsky0901 已提交
40 41
    AddAttr<std::vector<int>>(
        "ksize",
S
sweetsky0901 已提交
42
        "(vector), the unpooling window size(height, width) "
S
sweetsky0901 已提交
43
        "of unpooling operator.");
S
sweetsky0901 已提交
44 45
    AddAttr<std::vector<int>>(
        "strides",
S
sweetsky0901 已提交
46
        "(vector, default:{1, 1}), "
S
sweetsky0901 已提交
47
        "strides (height, width) of unpooling operator.")
S
sweetsky0901 已提交
48
        .SetDefault({1, 1});
S
sweetsky0901 已提交
49 50
    AddAttr<std::vector<int>>(
        "paddings",
S
sweetsky0901 已提交
51
        "(vector defalut:{0,0}), "
S
sweetsky0901 已提交
52
        "paddings (height, width) of unpooling operator.")
S
sweetsky0901 已提交
53
        .SetDefault({0, 0});
S
sweetsky0901 已提交
54 55
    AddAttr<std::string>(
        "unpooling_type",
S
sweetsky0901 已提交
56 57
        "(string), unpooling type, can be \"max\" for max-unpooling ")
        .InEnum({"max"});
S
sweetsky0901 已提交
58
    AddComment(R"DOC(
S
sweetsky0901 已提交
59 60 61
        "Input shape: $(N, C_{in}, H_{in}, W_{in})$
        Output shape: $(N, C_{out}, H_{out}, W_{out})$
        Where
S
sweetsky0901 已提交
62 63 64 65
          $$
            H_{out} = (H_{in}−1) * strides[0] − 2 * paddings[0] + ksize[0] \\
            W_{out} = (W_{in}−1) * strides[1] − 2 * paddings[1] + ksize[1]
          $$
S
sweetsky0901 已提交
66 67
        Paper: http://www.matthewzeiler.com/wp-content/uploads/2017
        /07/iccv2011.pdf
S
sweetsky0901 已提交
68 69 70 71 72
        )DOC");
  }
};

int OutputSize(int input_size, int ksize, int padding, int stride) {
S
sweetsky0901 已提交
73
  int output_size = (input_size - 1) * stride - 2 * padding + ksize;
S
sweetsky0901 已提交
74 75 76 77
  return output_size;
}

class UnpoolOp : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
78 79 80 81 82 83 84
  protected:
    framework::OpKernelType GetKernelType(
      const framework::ExecutionContext& ctx) const override {
      return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
        ctx.device_context());
    }
S
sweetsky0901 已提交
85

S
sweetsky0901 已提交
86 87 88 89 90 91
  public:
    using framework::OperatorWithKernel::OperatorWithKernel;
    void InferShape(framework::InferShapeContext* ctx) const override {
      PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of UnpoolOp"
                     "should not be null.");
      PADDLE_ENFORCE(ctx->HasInput("Indices"), "Input(Indices) of UnpoolOp"
S
sweetsky0901 已提交
92
                   "should not be null.");
S
sweetsky0901 已提交
93
      PADDLE_ENFORCE(ctx->HasOutput("Out"),
S
sweetsky0901 已提交
94
                   "Output(Out) of UnpoolOp should not be null.");
S
sweetsky0901 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
      auto in_x_dims = ctx->GetInputDim("X");
      auto in_y_dims = ctx->GetInputDim("Indices");
      std::string unpooling_type =
        ctx->Attrs().Get<std::string>("unpooling_type");
      std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
      std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
      std::vector<int> paddings =
        ctx->Attrs().Get<std::vector<int>>("paddings");
      PADDLE_ENFORCE(in_x_dims.size() == 4,
                      "Unpooling intput must be of 4-dimensional.");
      PADDLE_ENFORCE_EQ(in_x_dims, in_y_dims);
      std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
      for (size_t i = 0; i < ksize.size(); ++i) {
        output_shape.push_back(
          OutputSize(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
      }
      ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
   }
S
sweetsky0901 已提交
113 114 115
};

class UnpoolOpGrad : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
116 117 118 119 120 121
  protected:
    framework::OpKernelType GetKernelType(
      const framework::ExecutionContext& ctx) const override {
        return framework::OpKernelType(
          framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
          ctx.device_context());
S
sweetsky0901 已提交
122 123
  }

S
sweetsky0901 已提交
124 125 126 127 128
  public:
    using framework::OperatorWithKernel::OperatorWithKernel;
    void InferShape(framework::InferShapeContext* ctx) const override {
      PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
      PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
S
sweetsky0901 已提交
129
                                  "Input(X@GRAD) should not be null.");
S
sweetsky0901 已提交
130 131
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
   }
S
sweetsky0901 已提交
132 133 134 135 136
};
}    // namespace operators
}    // namespace paddle

namespace ops = paddle::operators;
S
sweetsky0901 已提交
137
REGISTER_OP(unpool, ops::UnpoolOp, ops::Unpool2dOpMaker, unpool_grad,
S
sweetsky0901 已提交
138
            ops::UnpoolOpGrad);
S
sweetsky0901 已提交
139
REGISTER_OP_CPU_KERNEL(
S
sweetsky0901 已提交
140
  unpool, ops::UnpoolKernel<paddle::platform::CPUPlace, float>,
S
sweetsky0901 已提交
141 142 143 144
  ops::UnpoolKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(
  unpool_grad, ops::UnpoolGradKernel<paddle::platform::CPUPlace, float>,
  ops::UnpoolGradKernel<paddle::platform::CPUPlace, double>);
S
sweetsky0901 已提交
145