conv_transpose_cudnn_op.cu.cc 12.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Z
zchen0211 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Z
zchen0211 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
14

Y
Yi Wang 已提交
15 16 17 18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/conv_transpose_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cudnn_helper.h"
Z
zchen0211 已提交
21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;

31
static constexpr size_t kConvCUDNNWorkspaceLimitBytes = 1024 * 1024 * 1024;
Z
zchen0211 已提交
32 33

template <typename T>
34
class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
35 36 37
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
38
                   "It must use CUDAPlace.");
Z
zchen0211 已提交
39 40 41 42 43 44
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
Z
zchen0211 已提交
45
    // cudnn v5 does not support dilations
Z
zchen0211 已提交
46
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
47
    int groups = ctx.Attr<int>("groups");
Z
zchen0211 已提交
48 49 50 51 52 53 54 55 56 57
    int user_workspace_size = ctx.Attr<int>("workspace_size_MB");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
C
chengduoZH 已提交
58 59 60 61 62 63 64
    DataLayout layout;

    if (strides.size() == 2U) {
      layout = DataLayout::kNCHW;
    } else {
      layout = DataLayout::kNCDHW;
    }
Z
zchen0211 已提交
65

C
chengduoZH 已提交
66
    // (N, M, H, W) or (N, M, D, H, W)
Z
zchen0211 已提交
67
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
68
        layout, framework::vectorize2int(input->dims()), groups);
C
chengduoZH 已提交
69
    // (N, C, O_h, O_w) or (N, C, O_d, O_h, O_w)
Z
zchen0211 已提交
70
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
71
        layout, framework::vectorize2int(output->dims()), groups);
C
chengduoZH 已提交
72
    // (M, C, K_h, K_w) or (M, C, K_d, K_h, K_w)
Z
zchen0211 已提交
73
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
74
        layout, framework::vectorize2int(filter->dims()), groups);
Z
zchen0211 已提交
75 76 77 78 79
    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
80
    size_t workspace_size_limit = kConvCUDNNWorkspaceLimitBytes;
Z
zchen0211 已提交
81 82 83 84
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }
    // ------------------- cudnn conv algorithm ---------------------
Z
zchen0211 已提交
85
    cudnnConvolutionBwdDataAlgo_t algo;
Q
QI JUN 已提交
86 87
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
Z
zchen0211 已提交
88
    // Get the algorithm
W
Wu Yi 已提交
89
    CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
Z
zchen0211 已提交
90 91 92 93 94 95 96
        handle, cudnn_filter_desc, cudnn_input_desc, cudnn_conv_desc,
        // dxDesc: Handle to the previously initialized output tensor
        // descriptor.
        cudnn_output_desc, CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
        workspace_size_limit, &algo));

    // get workspace size able to allocate
W
Wu Yi 已提交
97
    CUDNN_ENFORCE(
Z
zchen0211 已提交
98 99
        platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
            handle, cudnn_filter_desc, cudnn_input_desc, cudnn_conv_desc,
Z
zchen0211 已提交
100
            cudnn_output_desc, algo, &workspace_size_in_bytes));
Z
zchen0211 已提交
101 102

    // ------------------- cudnn conv transpose forward ---------------------
103 104 105
    int input_offset = input->numel() / input->dims()[0] / groups;
    int output_offset = output->numel() / output->dims()[0] / groups;
    int filter_offset = filter->numel() / groups;
Z
zchen0211 已提交
106
    T alpha = 1.0f, beta = 0.0f;
107
    for (int g = 0; g < groups; g++) {
F
fengjiayi 已提交
108 109 110 111 112 113 114 115
      auto cudnn_func = [&](void* cudnn_workspace) {
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
            handle, &alpha, cudnn_filter_desc, filter_data + filter_offset * g,
            cudnn_input_desc, input_data + input_offset * g, cudnn_conv_desc,
            algo, cudnn_workspace, workspace_size_in_bytes, &beta,
            cudnn_output_desc, output_data + output_offset * g));
      };
      dev_ctx.RunCudnnFuncWithWorkspace(cudnn_func, workspace_size_in_bytes);
116
    }
Z
zchen0211 已提交
117 118 119 120
  }
};

template <typename T>
121
class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
122 123 124
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
125
                   "It must use CUDAPlace.");
Z
zchen0211 已提交
126 127 128 129 130 131 132 133 134 135 136
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
    const T* input_data = input->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
Z
zchen0211 已提交
137
    // cudnn v5 does not support dilations
Z
zchen0211 已提交
138
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
139
    int groups = ctx.Attr<int>("groups");
Z
zchen0211 已提交
140 141 142 143
    int user_workspace_size = ctx.Attr<int>("workspace_size_MB");

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
Z
zchen0211 已提交
144
    ScopedTensorDescriptor output_desc;
Z
zchen0211 已提交
145 146 147 148
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;

C
chengduoZH 已提交
149
    // Input: (N, M, H, W) or (N, M, D, H, W)
Z
zchen0211 已提交
150
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
151
        layout, framework::vectorize2int(input->dims()), groups);
C
chengduoZH 已提交
152
    // Output: (N, C, O_h, O_w) or (N, C, O_d, O_h, O_w)
Z
zchen0211 已提交
153
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
154
        layout, framework::vectorize2int(output_grad->dims()), groups);
C
chengduoZH 已提交
155
    // Filter (M, C, K_h, K_w) or (M, C, K_d K_h, K_w)
Z
zchen0211 已提交
156
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
157
        layout, framework::vectorize2int(filter->dims()), groups);
Z
zchen0211 已提交
158 159 160 161 162

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

    // ------------------- cudnn backward algorithm ---------------------
Z
zchen0211 已提交
163
    cudnnConvolutionFwdAlgo_t data_algo;
Z
zchen0211 已提交
164
    cudnnConvolutionBwdFilterAlgo_t filter_algo;
Z
zchen0211 已提交
165 166
    size_t bwd_filter_ws_size, fwd_ws_size;
    size_t workspace_size_in_bytes = 0;
167
    size_t workspace_size_limit = kConvCUDNNWorkspaceLimitBytes;
Z
zchen0211 已提交
168 169 170 171
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }

Q
QI JUN 已提交
172 173
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
Z
zchen0211 已提交
174
    if (input_grad) {
Z
zchen0211 已提交
175
      // choose backward algorithm for data
W
Wu Yi 已提交
176
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
Z
zchen0211 已提交
177 178 179
          handle, cudnn_output_desc, cudnn_filter_desc, cudnn_conv_desc,
          cudnn_input_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
          workspace_size_limit, &data_algo));
W
Wu Yi 已提交
180
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
Z
zchen0211 已提交
181 182 183
          handle, cudnn_output_desc, cudnn_filter_desc, cudnn_conv_desc,
          cudnn_input_desc, data_algo, &fwd_ws_size));
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, fwd_ws_size);
Z
zchen0211 已提交
184 185 186
    }

    if (filter_grad) {
Z
zchen0211 已提交
187
      // choose backward algorithm for filter
W
Wu Yi 已提交
188
      CUDNN_ENFORCE(
Z
zchen0211 已提交
189
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
Z
zchen0211 已提交
190
              handle, cudnn_output_desc, cudnn_input_desc, cudnn_conv_desc,
Z
zchen0211 已提交
191 192 193 194
              cudnn_filter_desc,
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &filter_algo));

Z
zchen0211 已提交
195
      // get workspace for backwards filter algorithm
W
Wu Yi 已提交
196
      CUDNN_ENFORCE(
Z
zchen0211 已提交
197
          platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
Z
zchen0211 已提交
198 199 200 201
              handle, cudnn_output_desc, cudnn_input_desc, cudnn_conv_desc,
              cudnn_filter_desc, filter_algo, &bwd_filter_ws_size));
      workspace_size_in_bytes =
          std::max(workspace_size_in_bytes, bwd_filter_ws_size);
Z
zchen0211 已提交
202
    }
Z
zchen0211 已提交
203

Z
zchen0211 已提交
204 205
    // ------------------- cudnn conv backward data ---------------------
    // FIXME(typhoonzero): template type T may not be the same as cudnn call.
206 207 208 209
    int input_offset = input->numel() / input->dims()[0] / groups;
    int output_grad_offset =
        output_grad->numel() / output_grad->dims()[0] / groups;
    int filter_offset = filter->numel() / groups;
Z
zchen0211 已提交
210 211 212
    T alpha = 1.0f, beta = 0.0f;
    if (input_grad) {
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
213
      // Because beta is zero, it is unnecessary to reset input_grad.
214
      for (int g = 0; g < groups; g++) {
F
fengjiayi 已提交
215 216 217 218 219 220 221 222 223
        auto cudnn_func = [&](void* cudnn_workspace) {
          CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
              handle, &alpha, cudnn_output_desc,
              output_grad_data + output_grad_offset * g, cudnn_filter_desc,
              filter_data + filter_offset * g, cudnn_conv_desc, data_algo,
              cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_input_desc,
              input_grad_data + input_offset * g));
        };
        dev_ctx.RunCudnnFuncWithWorkspace(cudnn_func, workspace_size_in_bytes);
224
      }
Z
zchen0211 已提交
225
    }
Z
zchen0211 已提交
226

Z
zchen0211 已提交
227 228 229
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
230
      // Because beta is zero, it is unnecessary to reset filter_grad.
Z
zchen0211 已提交
231
      // Gradient with respect to the filter
232
      for (int g = 0; g < groups; g++) {
F
fengjiayi 已提交
233 234 235 236 237 238 239 240 241
        auto cudnn_func = [&](void* cudnn_func) {
          CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
              handle, &alpha, cudnn_output_desc,
              output_grad_data + output_grad_offset * g, cudnn_input_desc,
              input_data + input_offset * g, cudnn_conv_desc, filter_algo,
              cudnn_workspace, workspace_size_in_bytes, &beta,
              cudnn_filter_desc, filter_grad_data + filter_offset * g));
        };
        dev_ctx.RunCudnnFuncWithWorkspace(cudnn_func, workspace_size_in_bytes);
242
      }
Z
zchen0211 已提交
243 244 245 246 247 248 249 250 251
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

252 253 254 255 256 257 258 259 260 261 262 263 264
REGISTER_OP_KERNEL(conv2d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeOpKernel<float>,
                   ops::CUDNNConvTransposeOpKernel<double>);
REGISTER_OP_KERNEL(conv2d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeGradOpKernel<float>,
                   ops::CUDNNConvTransposeGradOpKernel<double>);

REGISTER_OP_KERNEL(conv3d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeOpKernel<float>,
                   ops::CUDNNConvTransposeOpKernel<double>);
REGISTER_OP_KERNEL(conv3d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeGradOpKernel<float>,
                   ops::CUDNNConvTransposeGradOpKernel<double>);