conv_transpose_cudnn_op.cu.cc 11.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Z
zchen0211 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Z
zchen0211 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
14

Y
Yi Wang 已提交
15 16 17 18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/conv_transpose_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cudnn_helper.h"
Z
zchen0211 已提交
21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;

31
static constexpr size_t kConvCUDNNWorkspaceLimitBytes = 1024 * 1024 * 1024;
Z
zchen0211 已提交
32 33

template <typename T>
34
class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
35 36 37
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
38
                   "It must use CUDAPlace.");
Z
zchen0211 已提交
39 40 41 42 43 44
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
Z
zchen0211 已提交
45
    // cudnn v5 does not support dilations
Z
zchen0211 已提交
46
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
47
    int groups = ctx.Attr<int>("groups");
Z
zchen0211 已提交
48 49 50 51 52 53 54 55 56 57
    int user_workspace_size = ctx.Attr<int>("workspace_size_MB");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
C
chengduoZH 已提交
58 59 60 61 62 63 64
    DataLayout layout;

    if (strides.size() == 2U) {
      layout = DataLayout::kNCHW;
    } else {
      layout = DataLayout::kNCDHW;
    }
Z
zchen0211 已提交
65

C
chengduoZH 已提交
66
    // (N, M, H, W) or (N, M, D, H, W)
Z
zchen0211 已提交
67
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
68
        layout, framework::vectorize2int(input->dims()), groups);
C
chengduoZH 已提交
69
    // (N, C, O_h, O_w) or (N, C, O_d, O_h, O_w)
Z
zchen0211 已提交
70
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
71
        layout, framework::vectorize2int(output->dims()), groups);
C
chengduoZH 已提交
72
    // (M, C, K_h, K_w) or (M, C, K_d, K_h, K_w)
Z
zchen0211 已提交
73
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
74
        layout, framework::vectorize2int(filter->dims()), groups);
Z
zchen0211 已提交
75 76 77 78 79 80
    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

    // ------------------- cudnn conv workspace ---------------------
    void* cudnn_workspace = nullptr;
    size_t workspace_size_in_bytes;  // final workspace to allocate.
81
    size_t workspace_size_limit = kConvCUDNNWorkspaceLimitBytes;
Z
zchen0211 已提交
82 83 84 85
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }
    // ------------------- cudnn conv algorithm ---------------------
Z
zchen0211 已提交
86
    cudnnConvolutionBwdDataAlgo_t algo;
Q
QI JUN 已提交
87 88
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
Z
zchen0211 已提交
89
    // Get the algorithm
W
Wu Yi 已提交
90
    CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
Z
zchen0211 已提交
91 92 93 94 95 96 97
        handle, cudnn_filter_desc, cudnn_input_desc, cudnn_conv_desc,
        // dxDesc: Handle to the previously initialized output tensor
        // descriptor.
        cudnn_output_desc, CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
        workspace_size_limit, &algo));

    // get workspace size able to allocate
W
Wu Yi 已提交
98
    CUDNN_ENFORCE(
Z
zchen0211 已提交
99 100
        platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
            handle, cudnn_filter_desc, cudnn_input_desc, cudnn_conv_desc,
Z
zchen0211 已提交
101
            cudnn_output_desc, algo, &workspace_size_in_bytes));
Z
zchen0211 已提交
102

103 104
    // Get cudnn workspace
    cudnn_workspace = dev_ctx.cudnn_workspace(workspace_size_in_bytes);
Z
zchen0211 已提交
105 106

    // ------------------- cudnn conv transpose forward ---------------------
107 108 109
    int input_offset = input->numel() / input->dims()[0] / groups;
    int output_offset = output->numel() / output->dims()[0] / groups;
    int filter_offset = filter->numel() / groups;
Z
zchen0211 已提交
110
    T alpha = 1.0f, beta = 0.0f;
111
    for (int g = 0; g < groups; g++) {
W
Wu Yi 已提交
112
      CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
113 114 115 116 117
          handle, &alpha, cudnn_filter_desc, filter_data + filter_offset * g,
          cudnn_input_desc, input_data + input_offset * g, cudnn_conv_desc,
          algo, cudnn_workspace, workspace_size_in_bytes, &beta,
          cudnn_output_desc, output_data + output_offset * g));
    }
Z
zchen0211 已提交
118 119 120 121
  }
};

template <typename T>
122
class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
123 124 125
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
126
                   "It must use CUDAPlace.");
Z
zchen0211 已提交
127 128 129 130 131 132 133 134 135 136 137
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
    const T* input_data = input->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
Z
zchen0211 已提交
138
    // cudnn v5 does not support dilations
Z
zchen0211 已提交
139
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
140
    int groups = ctx.Attr<int>("groups");
Z
zchen0211 已提交
141 142 143 144
    int user_workspace_size = ctx.Attr<int>("workspace_size_MB");

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
Z
zchen0211 已提交
145
    ScopedTensorDescriptor output_desc;
Z
zchen0211 已提交
146 147 148 149
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;

C
chengduoZH 已提交
150
    // Input: (N, M, H, W) or (N, M, D, H, W)
Z
zchen0211 已提交
151
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
152
        layout, framework::vectorize2int(input->dims()), groups);
C
chengduoZH 已提交
153
    // Output: (N, C, O_h, O_w) or (N, C, O_d, O_h, O_w)
Z
zchen0211 已提交
154
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
155
        layout, framework::vectorize2int(output_grad->dims()), groups);
C
chengduoZH 已提交
156
    // Filter (M, C, K_h, K_w) or (M, C, K_d K_h, K_w)
Z
zchen0211 已提交
157
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
158
        layout, framework::vectorize2int(filter->dims()), groups);
Z
zchen0211 已提交
159 160 161 162 163

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

    // ------------------- cudnn backward algorithm ---------------------
Z
zchen0211 已提交
164
    cudnnConvolutionFwdAlgo_t data_algo;
Z
zchen0211 已提交
165
    cudnnConvolutionBwdFilterAlgo_t filter_algo;
Z
zchen0211 已提交
166 167
    size_t bwd_filter_ws_size, fwd_ws_size;
    size_t workspace_size_in_bytes = 0;
168
    size_t workspace_size_limit = kConvCUDNNWorkspaceLimitBytes;
Z
zchen0211 已提交
169 170 171 172
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }

Q
QI JUN 已提交
173 174
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
Z
zchen0211 已提交
175
    if (input_grad) {
Z
zchen0211 已提交
176
      // choose backward algorithm for data
W
Wu Yi 已提交
177
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
Z
zchen0211 已提交
178 179 180
          handle, cudnn_output_desc, cudnn_filter_desc, cudnn_conv_desc,
          cudnn_input_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
          workspace_size_limit, &data_algo));
W
Wu Yi 已提交
181
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
Z
zchen0211 已提交
182 183 184
          handle, cudnn_output_desc, cudnn_filter_desc, cudnn_conv_desc,
          cudnn_input_desc, data_algo, &fwd_ws_size));
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, fwd_ws_size);
Z
zchen0211 已提交
185 186 187
    }

    if (filter_grad) {
Z
zchen0211 已提交
188
      // choose backward algorithm for filter
W
Wu Yi 已提交
189
      CUDNN_ENFORCE(
Z
zchen0211 已提交
190
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
Z
zchen0211 已提交
191
              handle, cudnn_output_desc, cudnn_input_desc, cudnn_conv_desc,
Z
zchen0211 已提交
192 193 194 195
              cudnn_filter_desc,
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &filter_algo));

Z
zchen0211 已提交
196
      // get workspace for backwards filter algorithm
W
Wu Yi 已提交
197
      CUDNN_ENFORCE(
Z
zchen0211 已提交
198
          platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
Z
zchen0211 已提交
199 200 201 202
              handle, cudnn_output_desc, cudnn_input_desc, cudnn_conv_desc,
              cudnn_filter_desc, filter_algo, &bwd_filter_ws_size));
      workspace_size_in_bytes =
          std::max(workspace_size_in_bytes, bwd_filter_ws_size);
Z
zchen0211 已提交
203
    }
Z
zchen0211 已提交
204

Z
zchen0211 已提交
205
    // ------------------- cudnn conv workspace ---------------------
206 207
    // Get cudnn workspace
    void* cudnn_workspace = dev_ctx.cudnn_workspace(workspace_size_in_bytes);
Z
zchen0211 已提交
208 209
    // ------------------- cudnn conv backward data ---------------------
    // FIXME(typhoonzero): template type T may not be the same as cudnn call.
210 211 212 213
    int input_offset = input->numel() / input->dims()[0] / groups;
    int output_grad_offset =
        output_grad->numel() / output_grad->dims()[0] / groups;
    int filter_offset = filter->numel() / groups;
Z
zchen0211 已提交
214 215 216
    T alpha = 1.0f, beta = 0.0f;
    if (input_grad) {
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
217
      // Because beta is zero, it is unnecessary to reset input_grad.
218
      for (int g = 0; g < groups; g++) {
W
Wu Yi 已提交
219
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
220 221 222 223 224 225
            handle, &alpha, cudnn_output_desc,
            output_grad_data + output_grad_offset * g, cudnn_filter_desc,
            filter_data + filter_offset * g, cudnn_conv_desc, data_algo,
            cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_input_desc,
            input_grad_data + input_offset * g));
      }
Z
zchen0211 已提交
226
    }
Z
zchen0211 已提交
227

Z
zchen0211 已提交
228 229 230
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
231
      // Because beta is zero, it is unnecessary to reset filter_grad.
Z
zchen0211 已提交
232
      // Gradient with respect to the filter
233
      for (int g = 0; g < groups; g++) {
W
Wu Yi 已提交
234
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
235 236 237 238 239 240
            handle, &alpha, cudnn_output_desc,
            output_grad_data + output_grad_offset * g, cudnn_input_desc,
            input_data + input_offset * g, cudnn_conv_desc, filter_algo,
            cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_filter_desc,
            filter_grad_data + filter_offset * g));
      }
Z
zchen0211 已提交
241 242 243 244 245 246 247 248 249
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

250 251 252 253 254 255 256 257 258 259 260 261 262
REGISTER_OP_KERNEL(conv2d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeOpKernel<float>,
                   ops::CUDNNConvTransposeOpKernel<double>);
REGISTER_OP_KERNEL(conv2d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeGradOpKernel<float>,
                   ops::CUDNNConvTransposeGradOpKernel<double>);

REGISTER_OP_KERNEL(conv3d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeOpKernel<float>,
                   ops::CUDNNConvTransposeOpKernel<double>);
REGISTER_OP_KERNEL(conv3d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeGradOpKernel<float>,
                   ops::CUDNNConvTransposeGradOpKernel<double>);