test_jit_save_load.py 41.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
18
import pickle
19
import shutil
20 21
import unittest
import numpy as np
L
Leo Chen 已提交
22
import paddle
23
from paddle.static import InputSpec
24
import paddle.fluid as fluid
25
from paddle.fluid.layers.utils import flatten
26
from paddle.fluid.dygraph import Linear
27
from paddle.fluid.dygraph import declarative, ProgramTranslator
28
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
W
WeiXin 已提交
29
from paddle.fluid import unique_name
30 31

BATCH_SIZE = 32
32
BATCH_NUM = 10
33 34 35
SEED = 10


36 37
def random_batch_reader(input_size, label_size):
    def _get_random_inputs_and_labels(input_size, label_size):
38
        np.random.seed(SEED)
39 40 41
        input = np.random.random(size=input_size).astype('float32')
        label = np.random.random(size=label_size).astype('int64')
        return input, label
42 43 44

    def __reader__():
        for _ in range(BATCH_NUM):
45 46 47
            batch_input, batch_label = _get_random_inputs_and_labels(
                [BATCH_SIZE, input_size], [BATCH_SIZE, label_size])
            yield batch_input, batch_label
48 49 50 51 52 53 54 55 56 57 58 59 60 61

    return __reader__


class LinearNet(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNet, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        return self._linear(x)


62 63 64 65 66 67 68 69 70 71
class LinearNetWithInputSpec(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithInputSpec, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
    def forward(self, x):
        return self._linear(x)


72 73 74 75 76 77 78 79 80
class LinearNetNotDeclarative(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetNotDeclarative, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, x):
        return self._linear(x)


81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
class LinerNetWithLabel(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinerNetWithLabel, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            shape=[None, 784], dtype='float32', name="image"), InputSpec(
                shape=[None, 1], dtype='int64', name="label")
    ])
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
        avg_loss = fluid.layers.mean(loss)
        return out, avg_loss


C
Chen Weihang 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
class LinerNetWithPruneInput(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinerNetWithPruneInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            shape=[None, 784], dtype='float32', name="image"), InputSpec(
                shape=[None, 1], dtype='int64', name="label")
    ])
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
        avg_loss = fluid.layers.mean(loss)
        return out


class LinerNetWithUselessInput(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinerNetWithUselessInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            shape=[None, 784], dtype='float32', name="image"), InputSpec(
                shape=[None, 1], dtype='int64', name="label")
    ])
    def forward(self, x, label):
        out = self._linear(x)
        return out


130 131 132 133 134 135 136 137 138 139 140 141 142
class LinearNetReturnLoss(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnLoss, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear(x)
        z = self._linear(y)
        loss = fluid.layers.mean(z)
        return z, loss


143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
class LinearNetMultiInput(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetMultiInput, self).__init__()
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            [None, 8], dtype='float32'), InputSpec(
                [None, 8], dtype='float32')
    ])
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
        loss = fluid.layers.mean(x_out + y_out)
        return x_out, y_out, loss


class MultiLoadingLinearNet(fluid.dygraph.Layer):
    def __init__(self, size, model_path):
        super(MultiLoadingLinearNet, self).__init__()
        self._linear = Linear(size, size)
165 166
        self._load_linear1 = paddle.jit.load(model_path)
        self._load_linear2 = paddle.jit.load(model_path)
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

    @declarative
    def forward(self, x):
        tmp1 = self._linear(x)
        tmp2 = self._load_linear1(tmp1)
        tmp3 = self._load_linear2(tmp2)
        y = self._linear(tmp3)
        return y


class LinearNetReturnHidden(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnHidden, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        loss = fluid.layers.mean(z)
        return y, loss


191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
class LinearNetWithNestOut(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithNestOut, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        out = y + z
        loss = fluid.layers.mean(out)
        return y, [(z, loss), out]


206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
class LinearNetWithDictInput(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithDictInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @paddle.jit.to_static(input_spec=[{
        'img': InputSpec(
            shape=[None, 8], dtype='float32', name='img')
    }, {
        'label': InputSpec(
            shape=[None, 1], dtype='int64', name='label')
    }])
    def forward(self, img, label):
        out = self._linear(img['img'])
        # not return loss to avoid prune output
        loss = paddle.nn.functional.cross_entropy(out, label['label'])
        return out


225 226 227 228 229 230 231 232 233 234
class LinearNetWithDictInputNoPrune(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithDictInputNoPrune, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, img):
        out = self._linear(img['img'] + img['img2'])
        return out


235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
class EmptyLayer(paddle.nn.Layer):
    def __init__(self):
        super(EmptyLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x):
        return x


class NoParamLayer(paddle.nn.Layer):
    def __init__(self):
        super(NoParamLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x, y):
        return x + y


253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
class LinearNetWithMultiStaticFunc(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithMultiStaticFunc, self).__init__()
        self._linear_0 = Linear(in_size, out_size)
        self._linear_1 = Linear(in_size, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        return self._linear_0(x)

    @paddle.jit.to_static
    def forward_no_param(self, x):
        return x

    @paddle.jit.to_static
    def forward_general(self, x):
        return self._linear_0(x) + self._linear_1(x) * self._scale


273
def train(layer, input_size=784, label_size=1):
274
    # create optimizer
L
Leo Chen 已提交
275
    sgd = fluid.optimizer.SGDOptimizer(
276
        learning_rate=0.01, parameter_list=layer.parameters())
277 278
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
279 280
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
281 282 283 284 285 286 287 288 289 290 291
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        cost = layer(img)

        loss = fluid.layers.cross_entropy(cost, label)
        avg_loss = fluid.layers.mean(loss)

        avg_loss.backward()
L
Leo Chen 已提交
292
        sgd.minimize(avg_loss)
293 294 295 296
        layer.clear_gradients()
    return [img], layer, avg_loss


297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
def train_with_label(layer, input_size=784, label_size=1):
    # create optimizer
    sgd = fluid.optimizer.SGDOptimizer(
        learning_rate=0.01, parameter_list=layer.parameters())
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        out, avg_loss = layer(img, label)

        avg_loss.backward()
        sgd.minimize(avg_loss)
        layer.clear_gradients()
    return out


318 319
class TestJitSaveLoad(unittest.TestCase):
    def setUp(self):
320
        self.model_path = "test_jit_save_load/model"
321 322 323
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
324
        paddle.seed(SEED)
L
Leo Chen 已提交
325
        paddle.framework.random._manual_program_seed(SEED)
326

327
    def train_and_save_model(self, model_path=None):
328 329
        layer = LinearNet(784, 1)
        example_inputs, layer, _ = train(layer)
330
        final_model_path = model_path if model_path else self.model_path
331
        orig_input_types = [type(x) for x in example_inputs]
332 333
        paddle.jit.save(
            layer=layer, path=final_model_path, input_spec=example_inputs)
334 335
        new_input_types = [type(x) for x in example_inputs]
        self.assertEqual(orig_input_types, new_input_types)
336 337
        return layer

338
    def test_save_load(self):
339 340 341
        # train and save model
        train_layer = self.train_and_save_model()
        # load model
342
        loaded_layer = paddle.jit.load(self.model_path)
343 344 345 346 347
        self.load_and_inference(train_layer, loaded_layer)
        self.load_dygraph_state_dict(train_layer)
        self.load_and_finetune(train_layer, loaded_layer)

    def load_and_inference(self, train_layer, infer_layer):
348
        train_layer.eval()
349
        infer_layer.eval()
350 351 352 353 354 355
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))

356 357
    def load_and_finetune(self, train_layer, load_train_layer):
        train_layer.train()
358 359
        load_train_layer.train()
        # train & compare
L
Leo Chen 已提交
360 361
        img0, _, train_loss = train(train_layer)
        img1, _, load_train_loss = train(load_train_layer)
362 363 364
        self.assertTrue(
            np.array_equal(train_loss.numpy(), load_train_loss.numpy()))

365 366
    def load_dygraph_state_dict(self, train_layer):
        train_layer.eval()
367
        # construct new model
368
        new_layer = LinearNet(784, 1)
369
        orig_state_dict = new_layer.state_dict()
370
        load_state_dict = paddle.load(self.model_path)
371 372 373
        for structured_name in orig_state_dict:
            self.assertTrue(structured_name in load_state_dict)
        new_layer.set_state_dict(load_state_dict)
374 375 376 377 378 379 380
        new_layer.eval()
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), new_layer(x).numpy()))

381
    def test_load_dygraph_no_path(self):
382
        model_path = "test_jit_save_load.no_path/model_path"
383 384 385
        with self.assertRaises(ValueError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

386
    def test_jit_load_model_incomplete(self):
387 388 389 390
        model_path = "test_jit_save_load.remove_variables/model"
        self.train_and_save_model(model_path)
        # remove `.pdiparams`	
        var_path = model_path + INFER_PARAMS_SUFFIX
391 392 393 394
        os.remove(var_path)
        with self.assertRaises(ValueError):
            paddle.jit.load(model_path)

395 396 397 398 399
    def test_jit_load_no_path(self):
        path = "test_jit_save_load.no_path/model_path"
        with self.assertRaises(ValueError):
            loaded_layer = paddle.jit.load(path)

400

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
class TestSaveLoadWithNestOut(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()

    def test_nest_output(self):
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))

        net = LinearNetWithNestOut(8, 8)
        dy_outs = flatten(net(x))
        net = declarative(net, input_spec=[InputSpec([None, 8], name='x')])

        model_path = "net_with_nest_out/model"
        paddle.jit.save(net, model_path)

        load_net = paddle.jit.load(model_path)
        load_outs = flatten(load_net(x))

        self.assertTrue(len(dy_outs) == 4)
        for dy_out, load_out in zip(dy_outs, load_outs):
            self.assertTrue(np.allclose(dy_out.numpy(), load_out.numpy()))


425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
class TestSaveLoadWithDictInput(unittest.TestCase):
    def test_dict_input(self):
        # NOTE: This net cannot be executed, it is just 
        # a special case for exporting models in model validation
        # We DO NOT recommend this writing way of Layer
        net = LinearNetWithDictInput(8, 8)
        # net.forward.concrete_program.inputs: 
        # (<__main__.LinearNetWithDictInput object at 0x7f2655298a98>, 
        #  {'img': var img : fluid.VarType.LOD_TENSOR.shape(-1, 8).astype(VarType.FP32)}, 
        #  {'label': var label : fluid.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)})
        self.assertEqual(len(net.forward.concrete_program.inputs), 3)

        path = "test_jit_save_load_with_dict_input/model"
        # prune inputs
        paddle.jit.save(
            layer=net,
            path=path,
            input_spec=[{
                'img': InputSpec(
                    shape=[None, 8], dtype='float32', name='img')
            }])

        img = paddle.randn(shape=[4, 8], dtype='float32')
        loaded_net = paddle.jit.load(path)
        loaded_out = loaded_net(img)

        # loaded_net._input_spec():
        # [InputSpec(shape=(-1, 8), dtype=VarType.FP32, name=img)]
        self.assertEqual(len(loaded_net._input_spec()), 1)


456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
class TestSaveLoadWithDictInputNoPrune(unittest.TestCase):
    def test_dict_input(self):
        net = LinearNetWithDictInputNoPrune(8, 8)

        path = "test_jit_save_load_with_dict_input_no_prune/model"
        # prune inputs
        paddle.jit.save(
            layer=net,
            path=path,
            input_spec=[{
                'img': InputSpec(
                    shape=[None, 8], dtype='float32', name='img'),
                'img2': InputSpec(
                    shape=[None, 8], dtype='float32', name='img2')
            }])

        img = paddle.randn(shape=[4, 8], dtype='float32')
        img2 = paddle.randn(shape=[4, 8], dtype='float32')
        loaded_net = paddle.jit.load(path)
        loaded_out = loaded_net(img, img2)

        self.assertEqual(len(loaded_net._input_spec()), 2)


480 481 482 483 484 485 486 487 488 489 490 491
class TestSaveLoadWithInputSpec(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()

    def test_with_input_spec(self):
        net = LinearNetReturnLoss(8, 8)
        # set x.shape = [None, 8]
        net.forward = declarative(
            net.forward, input_spec=[InputSpec(
                [None, 8], name='x')])

492
        model_path = "input_spec.output_spec/model"
493 494 495 496 497 498 499
        # check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 1)
        input_x = net.forward.inputs[0]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_x.name == 'x')

        # 1. prune loss
500 501
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, output_spec=output_spec)
502 503

        # 2. load to infer
504
        infer_layer = paddle.jit.load(model_path)
505 506 507 508 509 510 511
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        pred = infer_layer(x)

    def test_multi_in_out(self):
        net = LinearNetMultiInput(8, 8)

512
        model_path = "multi_inout.output_spec1/model"
513 514 515 516 517 518 519 520
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
521 522
        output_spec = net.forward.outputs[:2]
        paddle.jit.save(net, model_path, output_spec=output_spec)
523 524

        # 3. load to infer
525
        infer_layer = paddle.jit.load(model_path)
526 527 528 529 530 531 532 533
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        y = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
534 535 536
        model_path = "multi_inout.output_spec2/model"
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, [input_x], output_spec=output_spec)
537
        # 2. load again
538
        infer_layer2 = paddle.jit.load(model_path)
539 540 541 542 543 544 545
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
        self.assertTrue(np.allclose(pred_x.numpy(), pred_xx.numpy()))


546 547 548 549 550
class TestJitSaveLoadConfig(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
551
        paddle.seed(SEED)
L
Leo Chen 已提交
552
        paddle.framework.random._manual_program_seed(SEED)
553 554 555 556 557 558 559 560 561 562 563 564 565

    def test_output_spec(self):
        train_layer = LinearNetReturnLoss(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            out, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

566 567 568
        model_path = "save_load_config.output_spec"
        output_spec = [out]
        paddle.jit.save(
569
            layer=train_layer,
570
            path=model_path,
571
            input_spec=[x],
572
            output_spec=output_spec)
573 574

        train_layer.eval()
575
        infer_layer = paddle.jit.load(model_path)
576 577 578 579 580
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
    def test_save_no_support_config_error(self):
        layer = LinearNet(784, 1)
        path = "no_support_config_test"
        with self.assertRaises(ValueError):
            paddle.jit.save(layer=layer, path=path, model_filename="")

    def test_load_empty_model_filename_error(self):
        path = "error_model_filename_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, model_filename="")

    def test_load_empty_params_filename_error(self):
        path = "error_params_filename_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, params_filename="")

    def test_load_with_no_support_config(self):
        path = "no_support_config_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, separate_params=True)

602

603 604 605
class TestJitMultipleLoading(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
606
        self.model_path = "jit_multi_load/model"
607 608 609
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
610
        paddle.seed(SEED)
L
Leo Chen 已提交
611
        paddle.framework.random._manual_program_seed(SEED)
612 613 614 615 616 617
        # train and save base model
        self.train_and_save_orig_model()

    def train_and_save_orig_model(self):
        layer = LinearNet(self.linear_size, self.linear_size)
        example_inputs, layer, _ = train(layer, self.linear_size, 1)
618 619
        paddle.jit.save(
            layer=layer, path=self.model_path, input_spec=example_inputs)
620 621 622 623 624 625 626 627 628 629 630

    def test_load_model_retransform_inference(self):
        multi_loaded_layer = MultiLoadingLinearNet(self.linear_size,
                                                   self.model_path)
        state_dict = multi_loaded_layer.state_dict()
        name_set = set()
        for _, var in state_dict.items():
            self.assertTrue(var.name not in name_set)
            name_set.add(var.name)


631 632 633
class TestJitPruneModelAndLoad(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
634
        self.model_path = "jit_prune_model_and_load/model"
635 636 637
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
638
        paddle.seed(SEED)
L
Leo Chen 已提交
639
        paddle.framework.random._manual_program_seed(SEED)
640 641 642 643 644 645 646 647 648 649 650 651 652

    def train_and_save(self):
        train_layer = LinearNetReturnHidden(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            hidden, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

653 654
        output_spec = [hidden]
        paddle.jit.save(
655
            layer=train_layer,
656
            path=self.model_path,
657
            input_spec=[x],
658
            output_spec=output_spec)
659 660 661 662 663 664 665

        return train_layer

    def test_load_pruned_model(self):
        train_layer = self.train_and_save()
        train_layer.eval()

666
        infer_layer = paddle.jit.load(self.model_path)
667 668 669 670 671 672 673 674 675 676

        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))

    def test_load_var_not_in_extra_var_info(self):
        self.train_and_save()

        # chage extra var info
677
        var_info_path = self.model_path + INFER_PARAMS_INFO_SUFFIX
678 679 680 681 682 683 684
        with open(var_info_path, 'rb') as f:
            extra_var_info = pickle.load(f)
            extra_var_info.clear()
        with open(var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)

        with self.assertRaises(RuntimeError):
685
            paddle.jit.load(self.model_path)
686 687


688 689 690 691 692
class TestJitSaveMultiCases(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
693
        paddle.seed(SEED)
694 695
        paddle.framework.random._manual_program_seed(SEED)

C
Chen Weihang 已提交
696 697 698 699 700
    def verify_inference_correctness(self,
                                     layer,
                                     model_path,
                                     with_label_and_loss=False,
                                     with_label=False):
701 702 703 704
        layer.eval()
        loaded_layer = paddle.jit.load(model_path)
        loaded_layer.eval()
        # inference & compare
Z
Zhou Wei 已提交
705
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
C
Chen Weihang 已提交
706
        if with_label_and_loss:
Z
Zhou Wei 已提交
707
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
708 709
            pred, _ = layer(x, y)
            pred = pred.numpy()
C
Chen Weihang 已提交
710 711 712 713
        elif with_label:
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
            pred = layer(x, y)
            pred = pred.numpy()
714 715 716 717 718 719 720 721 722 723 724 725 726
        else:
            pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
        self.assertTrue(
            np.array_equal(pred, loaded_pred),
            msg="Result diff when load and inference:\nlayer result:\n{}\n" \
                "loaded layer result:\n{}".format(pred, loaded_pred))

    def test_no_prune_to_static_after_train(self):
        layer = LinearNet(784, 1)

        train(layer)

727
        model_path = "test_no_prune_to_static_after_train/model"
728 729 730 731 732 733 734
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_to_static_no_train(self):
        layer = LinearNetWithInputSpec(784, 1)

735
        model_path = "test_no_prune_to_static_no_train/model"
736 737 738 739 740 741 742 743 744
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train(self):
        layer = LinearNetNotDeclarative(784, 1)

        train(layer)

745
        model_path = "test_no_prune_no_to_static_after_train/model"
746 747 748 749 750 751 752 753 754 755 756 757 758
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train_with_examples(self):
        layer = LinearNetNotDeclarative(784, 1)

        example_inputs, _, _ = train(layer)

759 760
        model_path = "test_no_prune_no_to_static_after_train_with_examples/model"
        paddle.jit.save(layer=layer, path=model_path, input_spec=example_inputs)
761 762 763 764 765 766

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_no_train(self):
        layer = LinearNetNotDeclarative(784, 1)

767
        model_path = "test_no_prune_no_to_static_no_train/model"
768 769 770 771 772 773 774 775 776 777 778 779 780
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])

        self.verify_inference_correctness(layer, model_path)

    def test_prune_to_static_after_train(self):
        layer = LinerNetWithLabel(784, 1)

        out = train_with_label(layer)

781
        model_path = "test_prune_to_static_after_train/model"
782 783 784 785 786 787 788
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ],
789
            output_spec=[out])
790

C
Chen Weihang 已提交
791 792
        self.verify_inference_correctness(
            layer, model_path, with_label_and_loss=True)
793 794 795 796

    def test_prune_to_static_no_train(self):
        layer = LinerNetWithLabel(784, 1)

797
        model_path = "test_prune_to_static_no_train/model"
798 799
        # TODO: no train, cannot get output_spec var here
        # now only can use index
800
        output_spec = layer.forward.outputs[:1]
801 802 803 804 805 806 807
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ],
808
            output_spec=output_spec)
809

C
Chen Weihang 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
        self.verify_inference_correctness(
            layer, model_path, with_label_and_loss=True)

    def test_prune_input_to_static_no_train(self):
        layer = LinerNetWithPruneInput(784, 1)

        model_path = "test_prune_input_to_static_no_train/model"
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ])

        self.verify_inference_correctness(layer, model_path, with_label=True)

    def test_prune_useless_input_to_static_no_train(self):
        layer = LinerNetWithUselessInput(784, 1)

        model_path = "test_prune_useless_input_to_static_no_train/model"
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ])

        self.verify_inference_correctness(layer, model_path, with_label=True)
840 841 842 843 844 845

    def test_no_prune_input_spec_name_warning(self):
        layer = LinearNetWithInputSpec(784, 1)

        train(layer)

846
        model_path = "test_no_prune_input_spec_name_warning/model"
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name='feed_input')
            ])

        self.verify_inference_correctness(layer, model_path)

    def test_not_prune_output_spec_name_warning(self):
        layer = LinearNet(784, 1)

        train(layer)

867
        model_path = "test_not_prune_output_spec_name_warning/model"
Z
Zhou Wei 已提交
868
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
869
        paddle.jit.save(layer, model_path, output_spec=[out])
870 871 872 873 874 875

        self.verify_inference_correctness(layer, model_path)

    def test_prune_input_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

876
        model_path = "test_prune_input_spec_name_error/model"
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[InputSpec(
                    shape=[None, 784], dtype='float32')])
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(
                        shape=[None, 784], dtype='float32', name='feed_input')
                ])

    def test_prune_output_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

        train_with_label(layer)

897
        model_path = "test_prune_to_static_after_train/model"
Z
Zhou Wei 已提交
898
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
899 900 901 902 903 904 905 906
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(
                        shape=[None, 784], dtype='float32', name="image")
                ],
907
                output_spec=[out])
908 909


910 911
class TestJitSaveLoadEmptyLayer(unittest.TestCase):
    def setUp(self):
912
        self.model_path = "jit_save_load_empty_layer/model"
913 914 915 916 917
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_empty_layer(self):
        layer = EmptyLayer()
Z
Zhou Wei 已提交
918
        x = paddle.to_tensor(np.random.random((10)).astype('float32'))
919 920 921 922 923 924 925 926 927
        out = layer(x)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x)
        self.assertTrue(np.array_equal(out, load_out))


class TestJitSaveLoadNoParamLayer(unittest.TestCase):
    def setUp(self):
928
        self.model_path = "jit_save_load_no_param_layer/model"
929 930 931 932 933
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_no_param_layer(self):
        layer = NoParamLayer()
Z
Zhou Wei 已提交
934 935
        x = paddle.to_tensor(np.random.random((5)).astype('float32'))
        y = paddle.to_tensor(np.random.random((5)).astype('float32'))
936 937 938 939 940 941 942
        out = layer(x, y)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x, y)
        self.assertTrue(np.array_equal(out, load_out))


943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
class TestJitSaveLoadMultiMethods(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()

    def test_jit_save_load_inference(self):
        model_path_inference = "jit_save_load_multi_methods/model"
        IMAGE_SIZE = 224
        layer = LinearNetWithMultiStaticFunc(IMAGE_SIZE, 10)
        inps = paddle.randn([1, IMAGE_SIZE])
        result_origin = {}
        for func in dir(layer):
            if func.startswith('forward'):
                result_origin[func] = getattr(layer, func, None)(inps)
        paddle.jit.save(layer, model_path_inference)
        load_net = paddle.jit.load(model_path_inference)
        for func, result in result_origin.items():
            self.assertTrue(
                float((result - getattr(load_net, func, None)(inps)).abs().max(
                )) < 1e-5)

    def test_jit_save_load_multi_methods_inputspec(self):
        model_path = 'jit_save_load_multi_methods/model'
        layer = LinearNetWithMultiStaticFunc(784, 1)
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer, model_path, input_spec=[InputSpec(shape=[None, 784])])

971 972 973 974 975 976 977 978 979 980 981 982
    def test_parse_name(self):
        model_path_inference = "jit_save_load_parse_name/model"
        IMAGE_SIZE = 224
        layer = LinearNet(IMAGE_SIZE, 1)
        inps = paddle.randn([1, IMAGE_SIZE])
        layer(inps)
        paddle.jit.save(layer, model_path_inference)
        paddle.jit.save(layer, model_path_inference + '_v2')
        load_net = paddle.jit.load(model_path_inference)

        self.assertFalse(hasattr(load_net, 'v2'))

983

W
WeiXin 已提交
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
class LayerSaved(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LayerSaved, self).__init__()
        self.hidden = 100
        self._linear_0 = Linear(in_size, self.hidden)
        self._linear_1_0 = Linear(self.hidden, self.hidden)
        self._linear_1_1 = Linear(self.hidden, self.hidden)
        self._linear_2 = Linear(self.hidden, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        y = self._linear_0(x)
        # Multiple blocks
        if x.shape[0] == 1:
            y = self._linear_1_0(y)
        else:
            y += self._linear_1_1(y + self._scale)
        return self._linear_2(y)


class LayerLoadFinetune(paddle.nn.Layer):
    def __init__(self, in_size, out_size, load_path):
        super(LayerLoadFinetune, self).__init__()
        # Test duplicate name
        self._linear_0 = Linear(in_size, in_size)
        self._linear_1_0 = Linear(out_size, in_size)
        self._linear_1_1 = Linear(out_size, in_size)
        self._linear_2 = Linear(out_size, out_size)
        self._scale = paddle.to_tensor(9.9)

        # Load multiple times
        self._load_l1 = paddle.jit.load(load_path)
        self._load_l2 = paddle.jit.load(load_path)

    @paddle.jit.to_static
    def forward(self, x):
        y = self._linear_0(x)
        y = self._load_l1(y)
        # Multiple blocks
        if x.shape[0] == 1:
            y = self._linear_1_0(y)
            y = self._load_l1(y)
        else:
            y += self._linear_1_1(x + self._scale)
            y = self._load_l2(y)
        y = self._linear_1_0(y)
        y = self._load_l1(y)
        y = self._linear_1_0(y)
        # Use the same layer multiple times.
        y = self._load_l1(y)
        return y


1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
class TestJitSaveLoadSaveWithoutRunning(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_finetune_load(self):
        model_path = "test_jit_save_load_save_without_running/model"
        IMAGE_SIZE = 224
        inps0 = paddle.randn([1, IMAGE_SIZE])
        inps1 = paddle.randn([2, IMAGE_SIZE])
        # Use new namespace
        with unique_name.guard():
            layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE)
        #save
        paddle.jit.save(
            layer_save,
            model_path,
            input_spec=[
                paddle.static.InputSpec(
                    shape=[None, IMAGE_SIZE], dtype='float32')
            ])

        result_00 = layer_save(inps0)
        result_01 = layer_save(inps1)
        #load and save without running
        with unique_name.guard():
            layer_load = paddle.jit.load(model_path)
            paddle.jit.save(
                layer_load,
                model_path,
                input_spec=[
                    paddle.static.InputSpec(
                        shape=[None, IMAGE_SIZE], dtype='float32')
                ])
        #reload
        layer_reload = paddle.jit.load(model_path)
        result_10 = layer_reload(inps0)
        result_11 = layer_reload(inps1)

        self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5)
        self.assertTrue(float((result_01 - result_11).abs().max()) < 1e-5)


W
WeiXin 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
class TestJitSaveLoadFinetuneLoad(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_finetune_load(self):
        model_path = "test_jit_save_load_finetune_load/model"
        IMAGE_SIZE = 224
        inps0 = paddle.randn([1, IMAGE_SIZE])
        inps1 = paddle.randn([2, IMAGE_SIZE])
        # Use new namespace
        with unique_name.guard():
            layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE)
        layer_save(inps0)
        #save
        paddle.jit.save(layer_save, model_path)
        #load
        with unique_name.guard():
            layer_load = LayerLoadFinetune(IMAGE_SIZE, IMAGE_SIZE, model_path)
        #train
        train(layer_load, input_size=IMAGE_SIZE)
        result_00 = layer_load(inps0)
        result_01 = layer_load(inps1)
        #save
        paddle.jit.save(layer_load, model_path)
        #load
        layer_finetune = paddle.jit.load(model_path)
        result_10 = layer_finetune(inps0)
        result_11 = layer_finetune(inps1)

        self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5)
        self.assertTrue(float(((result_01 - result_11)).abs().max()) < 1e-5)


1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
class TestJitSaveLoadDataParallel(unittest.TestCase):
    def verify_inference_correctness(self, layer, path):
        layer.eval()
        loaded_layer = paddle.jit.load(path)
        loaded_layer.eval()
        # inference & compare
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
        pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
        self.assertTrue(
            np.array_equal(pred, loaded_pred),
            msg="Result diff when load and inference:\nlayer result:\n{}\n" \
                "loaded layer result:\n{}".format(pred, loaded_pred))

    def test_jit_save_data_parallel_with_inputspec(self):
        layer = LinearNetNotDeclarative(784, 1)
        layer = paddle.DataParallel(layer)

        path = "jit_save_data_parallel_with_inputspec/model"
        paddle.jit.save(
            layer=layer, path=path, input_spec=[InputSpec(shape=[None, 784])])

        self.verify_inference_correctness(layer, path)

    def test_jit_save_data_parallel_with_to_static(self):
        layer = LinearNetWithInputSpec(784, 1)
        layer = paddle.DataParallel(layer)

        path = "jit_save_data_parallel_with_to_static/model"
        paddle.jit.save(layer, path)

        self.verify_inference_correctness(layer, path)


1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
class InputSepcLayer(paddle.nn.Layer):
    '''
    A layer with InputSpec to test InputSpec compatibility
    '''

    @paddle.jit.to_static(input_spec=[
        InputSpec(
            shape=[None, 8], dtype='float32', name='x'), InputSpec(
                shape=[None, 1], dtype='float64', name='y')
    ])
    def forward(self, x, y):
        return x, y


class TestInputSpecCompatibility(unittest.TestCase):
    def _assert_input_spec_layer_return(self, expect_layer, test_layer):
        input_x = paddle.uniform([8, 8], dtype='float32')
        input_y = paddle.uniform([8, 1], dtype='float64')
        expected_result = expect_layer(input_x, input_y)
        test_result = test_layer(input_x, input_y)
        np.testing.assert_allclose(expected_result[0].numpy(),
                                   test_result[0].numpy())
        np.testing.assert_allclose(expected_result[1].numpy(),
                                   test_result[1].numpy())

    def test_jit_save_compatible_input_sepc(self):
        layer = InputSepcLayer()
        save_dir = "jit_save_compatible_input_spec"
        path = save_dir + "/model"

        paddle.jit.save(layer=layer, path=path)
        no_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, no_input_spec_layer)
        shutil.rmtree(save_dir)

        paddle.jit.save(
            layer=layer,
            path=path,
            input_spec=[
                InputSpec(
                    shape=[None, 8], dtype='float32', name='x'), InputSpec(
                        shape=[None, 1], dtype='float64', name='y')
            ])
        same_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, same_input_spec_layer)
        shutil.rmtree(save_dir)

        paddle.jit.save(
            layer=layer,
            path=path,
            input_spec=[
                InputSpec(
                    shape=[8, 8], dtype='float32'), InputSpec(
                        shape=[8, -1], dtype='float64')
            ])
        compatible_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, compatible_input_spec_layer)
        shutil.rmtree(save_dir)

    def test_jit_save_incompatible_input_sepc(self):
        layer = InputSepcLayer()
        save_dir = "jit_save_compatible_input_spec"
        path = save_dir + "/model"

        with self.assertRaises(ValueError):
            # type mismatch
            paddle.jit.save(
                layer=layer,
                path=path,
                input_spec=[
                    InputSpec(
                        shape=[None, 8], dtype='float64'), InputSpec(
                            shape=[None, 1], dtype='float64')
                ])

        with self.assertRaises(ValueError):
            # shape len mismatch
            paddle.jit.save(
                layer=layer,
                path=path,
                input_spec=[
                    InputSpec(
                        shape=[None, 8, 1], dtype='float32'), InputSpec(
                            shape=[None, 1], dtype='float64')
                ])

        with self.assertRaises(ValueError):
            # shape mismatch
            paddle.jit.save(
                layer=layer,
                path=path,
                input_spec=[
                    InputSpec(
                        shape=[None, 8], dtype='float32'), InputSpec(
                            shape=[None, 2], dtype='float64')
                ])
        if os.path.exists(save_dir):
            shutil.rmtree(save_dir)


1249 1250
if __name__ == '__main__':
    unittest.main()