matmul_op.cc 36.8 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
M
Markus Kliegl 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#include <algorithm>
Y
Yu Yang 已提交
13
#include <utility>
14
#include <vector>
15

Y
Yu Yang 已提交
16
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/fluid/framework/op_version_registry.h"
18
#include "paddle/phi/kernels/funcs/blas/blas.h"
19 20 21
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
M
Markus Kliegl 已提交
22 23 24

namespace paddle {
namespace operators {
25 26 27 28

/**
 * Printing shape information into a string is easy to use.
 */
29
inline static std::string DumpMatrixShape(
30
    const phi::funcs::MatDescriptor &desc) {
31 32 33 34 35 36
  std::stringstream buffer;
  buffer << "[" << desc.batch_size_ << ", " << desc.height_ << ", "
         << desc.width_ << "]";
  return buffer.str();
}

Y
Yu Yang 已提交
37 38 39 40
/**
 * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
 * original x_dim is returned.
 */
Y
yuyang18 已提交
41
static framework::DDim RowMatrixFromVector(const framework::DDim &x_dim) {
Y
Yu Yang 已提交
42 43 44
  if (x_dim.size() > 1) {
    return x_dim;
  }
45
  return phi::make_ddim({1, x_dim[0]});
Y
Yu Yang 已提交
46 47 48 49 50 51
}

/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
Y
yuyang18 已提交
52
static framework::DDim ColumnMatrixFromVector(const framework::DDim &y_dim) {
Y
Yu Yang 已提交
53 54 55
  if (y_dim.size() > 1) {
    return y_dim;
  }
56
  return phi::make_ddim({y_dim[0], 1});
Y
Yu Yang 已提交
57 58 59 60 61
}

template <typename DeviceContext, typename T>
class MatMulKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
62
  void Compute(const framework::ExecutionContext &context) const override {
63 64 65 66
    auto &x = GET_DATA_SAFELY(context.Input<framework::Tensor>("X"), "Input",
                              "X", "MatMul");
    auto &y = GET_DATA_SAFELY(context.Input<framework::Tensor>("Y"), "Input",
                              "Y", "MatMul");
Y
yuyang18 已提交
67
    auto *out = context.Output<framework::Tensor>("Out");
Y
Yu Yang 已提交
68 69
    out->mutable_data<T>(context.GetPlace());

70 71
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(
Y
Yu Yang 已提交
72
        RowMatrixFromVector(x.dims()), 0, context.Attr<bool>("transpose_X"));
73
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(
Y
Yu Yang 已提交
74
        ColumnMatrixFromVector(y.dims()), 0, context.Attr<bool>("transpose_Y"));
S
sneaxiy 已提交
75
    auto scale = static_cast<T>(context.Attr<float>("alpha"));
76

77
    int head_number = 1;
78 79
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
80 81 82 83 84 85 86 87 88 89 90 91
    head_number = context.Attr<int>("head_number");
#endif

    const auto &x_dims = x.dims();
    const auto &y_dims = y.dims();
    if (head_number <= 1 && x_dims.size() == 3 && y_dims.size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!context.Attr<bool>("transpose_X")) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
92 93
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
94 95 96
    bool split_vertical_y = (mat_dim_a.width_ != mat_dim_b.height_);

    if (head_number > 1) {
97
      blas.MatMulWithHead(x, mat_dim_a, y, mat_dim_b, scale, head_number, out,
98 99 100
                          T(0), split_vertical_y);
    } else {
      blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
101 102
    }
#else
S
sneaxiy 已提交
103
    blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
104
#endif
Y
Yu Yang 已提交
105 106 107 108 109
  }
};

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
Y
yuyang18 已提交
110
static framework::Tensor FoldInitDims(const framework::Tensor &input) {
Y
Yu Yang 已提交
111 112 113 114 115 116 117 118 119 120 121 122
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
Y
yuyang18 已提交
123 124
static framework::Tensor FoldHeadAndLastDims(const DeviceContext &context,
                                             const framework::Tensor &input) {
Y
Yu Yang 已提交
125 126 127 128 129 130 131 132
  auto in_dims = input.dims();
  if (in_dims.size() != 3) {
    return input;
  }
  framework::Tensor output;
  output.Resize({in_dims[1], in_dims[0], in_dims[2]});
  output.mutable_data<T>(context.GetPlace());
  std::vector<int> axis = {1, 0, 2};
133
  phi::funcs::Transpose<DeviceContext, T, 3> trans;
Y
Yu Yang 已提交
134 135
  trans(context, input, &output, axis);
  output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
M
Markus Kliegl 已提交
136

Y
Yu Yang 已提交
137 138 139 140 141 142 143 144 145 146
  return output;
}

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorIntoMatrixSequence(
147
    framework::Tensor *x, const phi::funcs::MatDescriptor &descriptor) {
Y
Yu Yang 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
Y
yuyang18 已提交
175 176 177
static void ReshapeXYOutIntoMatrixSequence(framework::Tensor *x,
                                           framework::Tensor *y,
                                           framework::Tensor *out, bool trans_x,
Y
Yu Yang 已提交
178 179 180
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
181 182
  auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y_dim, 0, trans_y);
Y
Yu Yang 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False    | True     | False    | True
// transpose_Y | False    | False    | True     | True
// -----------+----------+----------+----------+-----------
//        dX = | dOut Y^T | Y dOut^T | dOut Y   | Y^T dOut^T
//        dY = | X^T dOut | X dOut   | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
//   dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
template <typename DeviceContext, typename T>
class MatMulGradKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
222 223 224 225
  void MatMul(const framework::ExecutionContext &context,
              const framework::Tensor &a, bool trans_a,
              const framework::Tensor &b, bool trans_b,
              framework::Tensor *out) const {
Y
Yu Yang 已提交
226
    out->mutable_data<T>(context.GetPlace());
227 228 229
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b.dims(), 0, trans_b);
230 231

    int head_number = 1;
232 233
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
234 235 236
    if (context.HasAttr("head_number")) {
      head_number = context.Attr<int>("head_number");
    }
237 238 239 240 241 242 243 244 245
#endif

    if (head_number <= 1 && a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
S
sneaxiy 已提交
246
    blas.MatMul(a, mat_dim_a, b, mat_dim_b,
S
sneaxiy 已提交
247
                static_cast<T>(context.Attr<float>("alpha")), out, T(0));
Y
Yu Yang 已提交
248 249
  }

Y
yuyang18 已提交
250 251 252
  void CalcInputGrad(const framework::ExecutionContext &context,
                     const framework::Tensor &a, bool trans_a,
                     bool is_fold_init_dims_a, const framework::Tensor &b,
Y
Yu Yang 已提交
253
                     bool trans_b, bool is_fold_init_dims_b,
Y
yuyang18 已提交
254
                     framework::Tensor *out) const {
Y
Yu Yang 已提交
255 256 257 258 259 260
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, out);
    } else {
Y
yuyang18 已提交
261
      auto &ctx = context.template device_context<DeviceContext>();
262 263 264 265 266 267 268 269
      MatMul(
          context,
          is_fold_init_dims_a ? FoldInitDims(a)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
          trans_a,
          is_fold_init_dims_b ? FoldInitDims(b)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
          trans_b, out);
Y
Yu Yang 已提交
270 271 272
    }
  }

Y
yuyang18 已提交
273
  void Compute(const framework::ExecutionContext &context) const override {
Y
Yu Yang 已提交
274 275 276 277
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
Y
yuyang18 已提交
278 279
    auto *dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto *dy = context.Output<framework::Tensor>(framework::GradVarName("Y"));
Y
Yu Yang 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    if (transpose_x && transpose_y) {
      CalcInputGrad(context, y, true, true, dout, true, false, dx);
      CalcInputGrad(context, dout, true, true, x, true, false, dy);
    } else if (transpose_x) {
      CalcInputGrad(context, y, false, false, dout, true, false, dx);
      CalcInputGrad(context, x, false, false, dout, false, true, dy);
    } else if (transpose_y) {
      CalcInputGrad(context, dout, false, false, y, false, true, dx);
      CalcInputGrad(context, dout, true, true, x, false, true, dy);
    } else {
      CalcInputGrad(context, dout, false, false, y, true, false, dx);
      CalcInputGrad(context, x, true, true, dout, false, true, dy);
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }
    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }
  }
};
M
Markus Kliegl 已提交
326

327 328 329 330 331 332
framework::DDim GetDimForInput(const framework::InferShapeContext &ctx,
                               std::string input_name) {
  auto shape = ctx.Attrs().Get<std::vector<int>>("fused_reshape_" + input_name);
  auto axis =
      ctx.Attrs().Get<std::vector<int>>("fused_transpose_" + input_name);
  auto dim = ctx.GetInputDim(input_name);
333 334 335 336 337 338

  PADDLE_ENFORCE_GT(dim.size(), 0,
                    platform::errors::InvalidArgument(
                        "The Input(%s) has not been initialized properly. The "
                        "shape of Input(%s) = [%s].",
                        dim));
339 340

  // if mkldnn reshape+transpose+matmul fuse activated
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
  if (!shape.empty() && !axis.empty()) {
    PADDLE_ENFORCE_GE(
        shape.size(), 2,
        platform::errors::InvalidArgument(
            "shape_%s attribute of MatMulOp was implemented for 2, 3 "
            "or 4 dimensions.",
            input_name));
    PADDLE_ENFORCE_LE(
        shape.size(), 4,
        platform::errors::InvalidArgument(
            "shape_%s attribute of MatMulOp was implemented for 2, 3 "
            "or 4 dimensions.",
            input_name));
    PADDLE_ENFORCE_EQ(
        shape.size(), axis.size(),
        platform::errors::InvalidArgument(
            "Ranks of shape_%s and axis_%s attributes of MatMulOp "
            "must be equal.",
            input_name, input_name));
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

    int num_negative = std::count(shape.begin(), shape.end(), -1);
    PADDLE_ENFORCE_LE(num_negative, 1,
                      platform::errors::InvalidArgument(
                          "The max number of -1 in fused_reshape_%s is 1 "
                          "but received %d.",
                          input_name, num_negative));

    auto it_zero = std::find(shape.begin(), shape.end(), 0);
    if (it_zero != shape.end()) {
      for (uint64_t i = 0; i < shape.size(); i++) {
        if (shape[i] == 0) {
          PADDLE_ENFORCE_LT(i, dim.size(),
                            platform::errors::InvalidArgument(
                                "The index of 0 in fused_reshape_%s ",
                                "should be less than output dim size, ",
                                "but the index is %d and output dim size is %d",
                                input_name, i, dim.size()));
          shape[i] = dim.at(i);
        }
      }
    }

383 384 385 386 387
    dim = dim.reshape(shape).transpose(axis);
  }
  return dim;
}

388 389 390 391 392 393 394 395
template <typename DeviceContext, typename T>
class MatMulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void MatMul(const framework::ExecutionContext &context,
              const framework::Tensor &a, bool trans_a,
              const framework::Tensor &b, bool trans_b, bool flag,
              framework::Tensor *out) const {
    out->mutable_data<T>(context.GetPlace());
396 397 398
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b.dims(), 0, trans_b);
399 400

    int head_number = 1;
401 402
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
    head_number = context.Attr<int>("head_number");
#endif

    if (head_number <= 1 && a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
    blas.MatMul(a, mat_dim_a, b, mat_dim_b,
                static_cast<T>(context.Attr<float>("alpha")), out,
                static_cast<T>(flag));
  }

  void CalcInputGrad(const framework::ExecutionContext &context,
                     const framework::Tensor &a, bool trans_a,
                     bool is_fold_init_dims_a, const framework::Tensor &b,
                     bool trans_b, bool is_fold_init_dims_b, bool flag,
                     framework::Tensor *out) const {
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, flag, out);
    } else {
      auto &ctx = context.template device_context<DeviceContext>();
430 431 432 433 434 435 436 437
      MatMul(
          context,
          is_fold_init_dims_a ? FoldInitDims(a)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
          trans_a,
          is_fold_init_dims_b ? FoldInitDims(b)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
          trans_b, flag, out);
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
    }
  }

  void Compute(const framework::ExecutionContext &context) const override {
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout = *context.Input<framework::LoDTensor>("DOut");
    auto *ddx = context.Input<framework::LoDTensor>("DDX");
    auto *ddy = context.Input<framework::LoDTensor>("DDY");

    auto *dx = context.Output<framework::LoDTensor>("DX");
    auto *dy = context.Output<framework::LoDTensor>("DY");
    auto *ddout = context.Output<framework::LoDTensor>("DDOut");

    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    framework::DDim ddout_dims;
    if (ddout) {
      ddout_dims = ddout->dims();
      if (ddout_dims != dout.dims()) {
        ddout->Resize(dout.dims());
      }
    }

    bool ddout_flag = false;
    if (ddx) {
      auto ddx_mat = *ddx;
      if (ddx_mat.dims() != x.dims()) {
        ddx_mat.Resize(x.dims());
      }
      if (dy) {
        if (transpose_x && transpose_y) {
          // dy = dout' * ddx'
          CalcInputGrad(context, dout, true, true, ddx_mat, true, false, false,
                        dy);
        } else if (transpose_x) {
          // dy = ddx * dout
          CalcInputGrad(context, ddx_mat, false, false, dout, false, true,
                        false, dy);
        } else if (transpose_y) {
          // dy = dout' * ddx
          CalcInputGrad(context, dout, true, true, ddx_mat, false, true, false,
                        dy);
        } else {
          // dy = ddx' * dout
          CalcInputGrad(context, ddx_mat, true, true, dout, false, true, false,
                        dy);
        }
      }

      if (ddout) {
        CalcInputGrad(context, ddx_mat, transpose_x, true, y, transpose_y,
                      false, ddout_flag, ddout);
        ddout_flag = true;
      }
    }

    if (ddy) {
      auto ddy_mat = *ddy;
      if (ddy_mat.dims() != y.dims()) {
        ddy_mat.Resize(y.dims());
      }
      if (dx) {
        if (transpose_x && transpose_y) {
          // dx = ddy' * dout'
          CalcInputGrad(context, ddy_mat, true, true, dout, true, false, false,
                        dx);
        } else if (transpose_x) {
          // dx = ddy * dout'
          CalcInputGrad(context, ddy_mat, false, false, dout, true, false,
                        false, dx);
        } else if (transpose_y) {
          // dx = dout * ddy
          CalcInputGrad(context, dout, false, false, ddy_mat, false, true,
                        false, dx);
        } else {
          // dx = dout * ddy'
          CalcInputGrad(context, dout, false, false, ddy_mat, true, false,
                        false, dx);
        }
      }

      if (ddout) {
        CalcInputGrad(context, x, transpose_x, true, ddy_mat, transpose_y,
                      false, ddout_flag, ddout);
      }
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }

    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }

    if (ddout) {
      if (ddout_dims != dout.dims()) {
        ddout->Resize(ddout_dims);
      }
    }
  }
};

M
Markus Kliegl 已提交
565 566 567 568 569
class MatMulOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
570
  void InferShape(framework::InferShapeContext *context) const override {
571 572 573
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out", "matmul");
M
Markus Kliegl 已提交
574

575 576
    auto dim_x = GetDimForInput(*context, "X");
    auto dim_y = GetDimForInput(*context, "Y");
577 578 579 580 581 582 583 584 585 586 587 588 589

#ifdef PADDLE_WITH_MKLDNN
    // (jczaja): For NHWC execution output shape needs
    // to be computed like instead x*y we are to do y*x
    bool channelwise_onednn =
        context->IsRunMKLDNNKernel() &&
        (platform::MKLDNNDeviceContext::tls().get_cur_paddle_data_layout() ==
         framework::DataLayout::kNHWC);
    if (channelwise_onednn) {
      std::swap(dim_x, dim_y);
    }
#endif

590
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(
591 592
        RowMatrixFromVector(dim_x), 0,
        context->Attrs().Get<bool>("transpose_X"));
593
    auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(
594 595
        ColumnMatrixFromVector(dim_y), 0,
        context->Attrs().Get<bool>("transpose_Y"));
C
chengduoZH 已提交
596

597 598 599 600 601 602 603
    if (mat_dim_x.width_ == -1) {
      mat_dim_x.width_ = mat_dim_y.height_;
    }
    if (mat_dim_y.height_ == -1) {
      mat_dim_y.height_ = mat_dim_x.width_;
    }

P
phlrain 已提交
604
    if (context->IsRuntime()) {
605
      PADDLE_ENFORCE_EQ(
606 607
          mat_dim_x.batch_size_ == mat_dim_y.batch_size_ ||
              mat_dim_x.batch_size_ == 0 || mat_dim_y.batch_size_ == 0,
608 609 610 611 612 613 614
          true,
          platform::errors::InvalidArgument(
              "The batch size of the two matrices should be equal, or "
              "at least one is zero.\n"
              "But received X's shape: %s, Y's shape: %s.",
              DumpMatrixShape(mat_dim_x).c_str(),
              DumpMatrixShape(mat_dim_y).c_str()));
P
phlrain 已提交
615
    }
616
    int64_t dim_out_y = mat_dim_y.width_;
617 618
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
619
    int head_number = context->Attrs().Get<int>("head_number");
620
    bool split_vertical_y = (mat_dim_x.width_ != mat_dim_y.height_);
621 622 623
    if (context->IsRuntime()) {
      PADDLE_ENFORCE_LE(
          head_number, mat_dim_x.width_,
624 625 626 627 628
          platform::errors::InvalidArgument(
              "Unsatisfied mkl acceleration library requirements: "
              "The number of heads "
              "(%d) must be equal to X's width. But received X's shape: %s.",
              head_number, DumpMatrixShape(mat_dim_x).c_str()));
629 630 631 632

      if (!split_vertical_y && head_number > 0) {
        dim_out_y = head_number * mat_dim_y.width_;
      }
633
    }
634
#else
635 636 637
    PADDLE_ENFORCE_EQ(mat_dim_x.width_, mat_dim_y.height_,
                      platform::errors::InvalidArgument(
                          "Input X's width should be equal to the Y's height, "
638
                          "but received X's shape: [%s], "
639 640
                          "Y's shape: [%s].",
                          dim_x, dim_y));
641 642
#endif

643
    std::vector<int64_t> dim_out;
Y
Yu Yang 已提交
644
    if (mat_dim_x.batch_size_ != 0) {
645
      dim_out = phi::vectorize(dim_x);
Y
Yu Yang 已提交
646
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
647
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
648
    } else if (mat_dim_y.batch_size_ != 0) {
649
      dim_out = phi::vectorize(dim_y);
Y
Yu Yang 已提交
650
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
651
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
652
    } else {
653
      dim_out = {mat_dim_x.height_, dim_out_y};
M
Markus Kliegl 已提交
654 655
    }

Y
Yu Yang 已提交
656 657 658
    if (dim_x.size() == 1 && dim_out[dim_out.size() - 2] == 1) {
      std::swap(dim_out[dim_out.size() - 2], dim_out[dim_out.size() - 1]);
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
659 660
    }

Y
Yu Yang 已提交
661 662
    if (dim_y.size() == 1 && dim_out[dim_out.size() - 1] == 1) {
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
663 664
    }

Y
Yu Yang 已提交
665 666
    if (dim_out.empty()) {
      dim_out = {1};
M
Markus Kliegl 已提交
667
    }
668

669
    framework::DDim ddim_out = phi::make_ddim(dim_out);
670 671 672 673 674 675 676 677 678

#ifdef PADDLE_WITH_MKLDNN
    //  if mkldnn matmul+transpose+reshape fuse activated
    auto reshape_out =
        context->Attrs().Get<std::vector<int>>("fused_reshape_Out");
    auto transpose_out =
        context->Attrs().Get<std::vector<int>>("fused_transpose_Out");

    if (!reshape_out.empty() && !transpose_out.empty()) {
679
      ddim_out = ddim_out.transpose(transpose_out).reshape(reshape_out);
680 681
    }
#endif
682 683
    context->SetOutputDim("Out", ddim_out);
    context->ShareLoD("X", "Out");
M
Markus Kliegl 已提交
684
  }
685 686 687

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
688 689
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
690 691

#ifdef PADDLE_WITH_MKLDNN
692
    using dnnl::memory;
693
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
694 695 696 697 698 699 700
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
701 702 703 704 705 706

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
707 708 709
      return framework::OpKernelType(
          framework::TransToProtoVarType(tensor.dtype()), tensor.place(),
          tensor.layout());
710
    } else {
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
#ifdef PADDLE_WITH_MKLDNN
      // When matmul is first oneDNN op in a chain (there was some non oneDNN op
      // previously)
      // then we also need to rotate shape NHWC -> NCWH
      if ((expected_kernel_type.data_layout_ ==
           framework::DataLayout::kMKLDNN) &&
          (tensor.layout() != framework::DataLayout::kMKLDNN) &&
          paddle::platform::MKLDNNDeviceContext::tls()
                  .get_cur_paddle_data_layout() ==
              framework::DataLayout::kNHWC) {
        return framework::OpKernelType(expected_kernel_type.data_type_,
                                       tensor.place(),
                                       framework::DataLayout::kNHWC);
      }
#endif
726 727 728 729
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
M
Markus Kliegl 已提交
730 731 732 733
};

class MatMulOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
734
  void Make() override {
M
Markus Kliegl 已提交
735 736 737 738 739 740 741 742 743 744 745
    AddInput("X", "The first input of MatMul op");
    AddInput("Y", "The second input of MatMul op");
    AddOutput("Out", "The output of MatMul op");
    AddAttr<bool>("transpose_X",
                  R"DOC(If true, use the transpose of `X`.
        )DOC")
        .SetDefault(false);
    AddAttr<bool>("transpose_Y",
                  R"DOC(If true, use the transpose of `Y`.
        )DOC")
        .SetDefault(false);
S
sneaxiy 已提交
746
    AddAttr<float>("alpha", "The scale of Out").SetDefault(1.0f);
747 748 749
    AddAttr<bool>(
        "use_mkldnn",
        "(bool, default false) Indicates if MKL-DNN kernel will be used")
750 751
        .SetDefault(false)
        .AsExtra();
752 753
    AddAttr<std::vector<int>>("fused_reshape_X",
                              R"DOC(Shape of fused reshape of `X` input.)DOC")
754 755
        .SetDefault({})
        .AsExtra();
756 757
    AddAttr<std::vector<int>>("fused_reshape_Y",
                              R"DOC(Shape of fused reshape of `Y` input.)DOC")
758 759
        .SetDefault({})
        .AsExtra();
760 761
    AddAttr<std::vector<int>>("fused_transpose_X",
                              R"DOC(Axis of fused transpose of `X` input.)DOC")
762 763
        .SetDefault({})
        .AsExtra();
764 765
    AddAttr<std::vector<int>>("fused_transpose_Y",
                              R"DOC(Axis of fused transpose of `Y` input.)DOC")
766 767
        .SetDefault({})
        .AsExtra();
768 769 770 771
    AddAttr<std::vector<int>>(
        "fused_reshape_Out",
        R"DOC(When MKLDNN MatMul_transpose_reshape fuse activated, "
              "it's a shape atribute of fused reshape for `Out` output.)DOC")
772 773
        .SetDefault({})
        .AsExtra();
774 775 776 777
    AddAttr<std::vector<int>>(
        "fused_transpose_Out",
        R"DOC(When MKLDNN MatMul_transpose_reshape fuse activated, "
              "it's a axis atribute of fused transpose for `Out` output.)DOC")
778 779
        .SetDefault({})
        .AsExtra();
780 781 782 783
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
784 785
        .SetDefault(false)
        .AsExtra();
786 787 788 789
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
790 791
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
792
    /* int8 parameters */
793 794
    AddAttr<float>("Scale_x",
                   "(float, default 1.0f), The quantize scale of X tensor")
795 796
        .SetDefault(1.0f)
        .AsExtra();
797 798
    AddAttr<float>("Scale_y",
                   "(float, default 1.0f), The quantize scale of Y tensor")
799 800
        .SetDefault(1.0f)
        .AsExtra();
801 802
    AddAttr<float>("Scale_out",
                   "(float, default 1.0f), The quantize scale of output data")
803 804
        .SetDefault(1.0f)
        .AsExtra();
805 806 807
    AddAttr<bool>("force_fp32_output",
                  "(bool, default false) Force INT8 kernel output FP32, only "
                  "used in MKL-DNN INT8")
808 809
        .SetDefault(false)
        .AsExtra();
810

811 812
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
813 814 815
    AddAttr<int>("head_number", "The number of heads of the matrix")
        .SetDefault(1);
#endif
M
Markus Kliegl 已提交
816
    AddComment(R"DOC(
K
kexinzhao 已提交
817 818
MatMul Operator.
This operator is used to perform (batched) matrix multiplication
M
Markus Kliegl 已提交
819 820 821 822 823 824 825 826 827 828 829 830
over the last two dimensions of the input tensors `X` and `Y`.
If a transpose flag is specified, the last two dimensions of the
tensor are transposed. If the tensor is rank-1 of shape [D], then
for `X` it is treated as [1, D] in nontransposed form and as [D, 1]
in transposed form, whereas for `Y` it is the opposite: It is treated
as [D, 1] in nontransposed form and as [1, D] in transposed form.
Examples without transpose:
- X: [K], Y: [K] => Out: [1]
- X: [K], Y: [K, N] => Out: [N]
- X: [B, M, K], Y: [K] => Out: [B, M]
- X: [M, K], Y: [B, K, N] => Out: [B, M, N]
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, N]
C
chengduoZH 已提交
831
- X: [B, ..., M, K], Y: [B, ..., K, N] => Out: [B, ..., M, N]
832 833
Example of matrix multiplication with head_number of H
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, H * N]
M
Markus Kliegl 已提交
834 835
The behavior is designed to be similar to the `numpy.matmul` function.
The differences are:
C
chengduoZH 已提交
836 837
- When the rank of the input data is less than or equal to 3, it
  is similar to the `numpy.matmul` function.
C
chengduoZH 已提交
838
- When the rank of the input is greater than 3, the rank of X and
C
chengduoZH 已提交
839
  Y must be equal, and the first `rank - 2` dimensions must be equal.
M
Markus Kliegl 已提交
840
- We add `transpose_X` and `transpose_Y` flags.
841 842 843
- We add `head_number` attribute, which is used to multiple two matrixes head
  by head, and eventually concatenates the output of several (head_number)
  small matrixes multiplication.
M
Markus Kliegl 已提交
844
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
845
or not. But the output only shares the LoD information with input `X`.
M
Markus Kliegl 已提交
846 847 848 849 850 851 852 853 854
)DOC");
  }
};

class MatMulOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
855
  void InferShape(framework::InferShapeContext *context) const override {
856 857 858 859
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "matmul");
M
Markus Kliegl 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872
    auto x_dims = context->GetInputDim("X");
    auto y_dims = context->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (context->HasOutput(x_grad_name)) {
      context->SetOutputDim(x_grad_name, x_dims);
    }
    if (context->HasOutput(y_grad_name)) {
      context->SetOutputDim(y_grad_name, y_dims);
    }
  }
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
M
Markus Kliegl 已提交
888 889
};

H
hong 已提交
890 891
template <typename T>
class MatMulOpGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
892
 public:
H
hong 已提交
893
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
894 895

 protected:
896
  void Apply(GradOpPtr<T> retv) const override {
Y
Yu Yang 已提交
897
    retv->SetType("matmul_grad");
H
hong 已提交
898 899 900 901 902 903
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
904 905
  }
};
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960

class MatMulOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput("DOut"), "Input", "DOut", "matmul");

    if (context->HasOutput("DX") && context->HasInput("DDY")) {
      context->ShareDim("X", "DX");
    }

    if (context->HasOutput("DY") && context->HasInput("DDX")) {
      context->ShareDim("Y", "DY");
    }

    if (context->HasOutput("DDOut") &&
        (context->HasInput("DDY") || context->HasInput("DDX"))) {
      context->ShareDim("DOut", "DDOut");
    }
  }
};

template <typename T>
class MatMulOpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> retv) const override {
    retv->SetType("matmul_grad_grad");
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));

    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddy = this->OutputGrad(framework::GradVarName("Y"));

    if (!ddx.empty() || !ddy.empty()) {
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    }
    retv->SetOutput(
        "DX", ddy.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    retv->SetOutput(
        "DY", ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));

    retv->SetAttrMap(this->Attrs());
  }
};

M
Markus Kliegl 已提交
961 962 963 964
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
965
REGISTER_OPERATOR(matmul, ops::MatMulOp, ops::MatMulOpMaker,
H
hong 已提交
966 967
                  ops::MatMulOpGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpGradMaker<paddle::imperative::OpBase>);
968 969 970 971
REGISTER_OPERATOR(matmul_grad, ops::MatMulOpGrad,
                  ops::MatMulOpDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(matmul_grad_grad, ops::MatMulOpDoubleGrad);
M
Markus Kliegl 已提交
972
REGISTER_OP_CPU_KERNEL(
Y
yuyang18 已提交
973
    matmul, ops::MatMulKernel<paddle::platform::CPUDeviceContext, float>,
974
    ops::MatMulKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
975 976
REGISTER_OP_CPU_KERNEL(
    matmul_grad,
Y
yuyang18 已提交
977
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, float>,
978
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, double>);
Y
Yu Yang 已提交
979

980 981 982 983 984
REGISTER_OP_CPU_KERNEL(
    matmul_grad_grad,
    ops::MatMulDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MatMulDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);

985
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yu Yang 已提交
986
REGISTER_OP_CUDA_KERNEL(
Y
yuyang18 已提交
987 988 989 990
    matmul, ops::MatMulKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MatMulKernel<paddle::platform::CUDADeviceContext,
                      paddle::platform::float16>);
Y
Yu Yang 已提交
991 992
REGISTER_OP_CUDA_KERNEL(
    matmul_grad,
Y
yuyang18 已提交
993 994 995 996
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext,
                          paddle::platform::float16>);
997 998 999 1000
REGISTER_OP_CUDA_KERNEL(
    matmul_grad_grad,
    ops::MatMulDoubleGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulDoubleGradKernel<paddle::platform::CUDADeviceContext, double>);
Y
Yu Yang 已提交
1001
#endif
1002

1003 1004
REGISTER_OP_VERSION(matmul).AddCheckpoint(
    R"ROC(Register matmul for adding the attribute of
1005
       fused_reshape_Y)ROC",
1006 1007 1008 1009 1010 1011
    paddle::framework::compatible::OpVersionDesc().NewAttr(
        "fused_reshape_Y",
        "In order to support the function of fused the input Y "
        " and input X into the input X when "
        "using the operator of matmul, and get raw shape of input Y.",
        std::vector<int>{}));