matmul_op.cc 39.1 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
M
Markus Kliegl 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#include <algorithm>
Y
Yu Yang 已提交
13
#include <utility>
14
#include <vector>
Y
Yu Yang 已提交
15
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/framework/op_version_registry.h"
17
#include "paddle/pten/kernels/funcs/blas/blas.h"
18 19 20
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
M
Markus Kliegl 已提交
21 22 23

namespace paddle {
namespace operators {
24 25 26 27

/**
 * Printing shape information into a string is easy to use.
 */
28 29
inline static std::string DumpMatrixShape(
    const pten::funcs::MatDescriptor &desc) {
30 31 32 33 34 35
  std::stringstream buffer;
  buffer << "[" << desc.batch_size_ << ", " << desc.height_ << ", "
         << desc.width_ << "]";
  return buffer.str();
}

Y
Yu Yang 已提交
36 37 38 39
/**
 * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
 * original x_dim is returned.
 */
Y
yuyang18 已提交
40
static framework::DDim RowMatrixFromVector(const framework::DDim &x_dim) {
Y
Yu Yang 已提交
41 42 43
  if (x_dim.size() > 1) {
    return x_dim;
  }
44
  return pten::make_ddim({1, x_dim[0]});
Y
Yu Yang 已提交
45 46 47 48 49 50
}

/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
Y
yuyang18 已提交
51
static framework::DDim ColumnMatrixFromVector(const framework::DDim &y_dim) {
Y
Yu Yang 已提交
52 53 54
  if (y_dim.size() > 1) {
    return y_dim;
  }
55
  return pten::make_ddim({y_dim[0], 1});
Y
Yu Yang 已提交
56 57 58 59 60
}

template <typename DeviceContext, typename T>
class MatMulKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
61
  void Compute(const framework::ExecutionContext &context) const override {
62 63 64 65
    auto &x = GET_DATA_SAFELY(context.Input<framework::Tensor>("X"), "Input",
                              "X", "MatMul");
    auto &y = GET_DATA_SAFELY(context.Input<framework::Tensor>("Y"), "Input",
                              "Y", "MatMul");
Y
yuyang18 已提交
66
    auto *out = context.Output<framework::Tensor>("Out");
Y
Yu Yang 已提交
67 68
    out->mutable_data<T>(context.GetPlace());

69 70
    auto blas = pten::funcs::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = pten::funcs::CreateMatrixDescriptor(
Y
Yu Yang 已提交
71
        RowMatrixFromVector(x.dims()), 0, context.Attr<bool>("transpose_X"));
72
    auto mat_dim_b = pten::funcs::CreateMatrixDescriptor(
Y
Yu Yang 已提交
73
        ColumnMatrixFromVector(y.dims()), 0, context.Attr<bool>("transpose_Y"));
S
sneaxiy 已提交
74
    auto scale = static_cast<T>(context.Attr<float>("alpha"));
75

76
    int head_number = 1;
77 78
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
79 80 81 82 83 84 85 86 87 88 89 90
    head_number = context.Attr<int>("head_number");
#endif

    const auto &x_dims = x.dims();
    const auto &y_dims = y.dims();
    if (head_number <= 1 && x_dims.size() == 3 && y_dims.size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!context.Attr<bool>("transpose_X")) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
91 92
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
93 94 95
    bool split_vertical_y = (mat_dim_a.width_ != mat_dim_b.height_);

    if (head_number > 1) {
96
      blas.MatMulWithHead(x, mat_dim_a, y, mat_dim_b, scale, head_number, out,
97 98 99
                          T(0), split_vertical_y);
    } else {
      blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
100 101
    }
#else
S
sneaxiy 已提交
102
    blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
103
#endif
Y
Yu Yang 已提交
104 105 106 107 108
  }
};

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
Y
yuyang18 已提交
109
static framework::Tensor FoldInitDims(const framework::Tensor &input) {
Y
Yu Yang 已提交
110 111 112 113 114 115 116 117 118 119 120 121
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
Y
yuyang18 已提交
122 123
static framework::Tensor FoldHeadAndLastDims(const DeviceContext &context,
                                             const framework::Tensor &input) {
Y
Yu Yang 已提交
124 125 126 127 128 129 130 131
  auto in_dims = input.dims();
  if (in_dims.size() != 3) {
    return input;
  }
  framework::Tensor output;
  output.Resize({in_dims[1], in_dims[0], in_dims[2]});
  output.mutable_data<T>(context.GetPlace());
  std::vector<int> axis = {1, 0, 2};
132
  pten::funcs::Transpose<DeviceContext, T, 3> trans;
Y
Yu Yang 已提交
133 134
  trans(context, input, &output, axis);
  output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
M
Markus Kliegl 已提交
135

Y
Yu Yang 已提交
136 137 138 139 140 141 142 143 144 145
  return output;
}

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorIntoMatrixSequence(
146
    framework::Tensor *x, const pten::funcs::MatDescriptor &descriptor) {
Y
Yu Yang 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
Y
yuyang18 已提交
174 175 176
static void ReshapeXYOutIntoMatrixSequence(framework::Tensor *x,
                                           framework::Tensor *y,
                                           framework::Tensor *out, bool trans_x,
Y
Yu Yang 已提交
177 178 179
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
180 181
  auto mat_dim_x = pten::funcs::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = pten::funcs::CreateMatrixDescriptor(y_dim, 0, trans_y);
Y
Yu Yang 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False    | True     | False    | True
// transpose_Y | False    | False    | True     | True
// -----------+----------+----------+----------+-----------
//        dX = | dOut Y^T | Y dOut^T | dOut Y   | Y^T dOut^T
//        dY = | X^T dOut | X dOut   | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
//   dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
template <typename DeviceContext, typename T>
class MatMulGradKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
221 222 223 224
  void MatMul(const framework::ExecutionContext &context,
              const framework::Tensor &a, bool trans_a,
              const framework::Tensor &b, bool trans_b,
              framework::Tensor *out) const {
Y
Yu Yang 已提交
225
    out->mutable_data<T>(context.GetPlace());
226 227 228
    auto blas = pten::funcs::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = pten::funcs::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = pten::funcs::CreateMatrixDescriptor(b.dims(), 0, trans_b);
229 230

    int head_number = 1;
231 232
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
233 234 235
    if (context.HasAttr("head_number")) {
      head_number = context.Attr<int>("head_number");
    }
236 237 238 239 240 241 242 243 244
#endif

    if (head_number <= 1 && a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
S
sneaxiy 已提交
245
    blas.MatMul(a, mat_dim_a, b, mat_dim_b,
S
sneaxiy 已提交
246
                static_cast<T>(context.Attr<float>("alpha")), out, T(0));
Y
Yu Yang 已提交
247 248
  }

Y
yuyang18 已提交
249 250 251
  void CalcInputGrad(const framework::ExecutionContext &context,
                     const framework::Tensor &a, bool trans_a,
                     bool is_fold_init_dims_a, const framework::Tensor &b,
Y
Yu Yang 已提交
252
                     bool trans_b, bool is_fold_init_dims_b,
Y
yuyang18 已提交
253
                     framework::Tensor *out) const {
Y
Yu Yang 已提交
254 255 256 257 258 259
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, out);
    } else {
Y
yuyang18 已提交
260
      auto &ctx = context.template device_context<DeviceContext>();
Y
Yu Yang 已提交
261 262 263 264 265 266 267 268 269 270
      MatMul(context, is_fold_init_dims_a
                          ? FoldInitDims(a)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
             trans_a, is_fold_init_dims_b
                          ? FoldInitDims(b)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
             trans_b, out);
    }
  }

Y
yuyang18 已提交
271
  void Compute(const framework::ExecutionContext &context) const override {
Y
Yu Yang 已提交
272 273 274 275
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
Y
yuyang18 已提交
276 277
    auto *dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto *dy = context.Output<framework::Tensor>(framework::GradVarName("Y"));
Y
Yu Yang 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    if (transpose_x && transpose_y) {
      CalcInputGrad(context, y, true, true, dout, true, false, dx);
      CalcInputGrad(context, dout, true, true, x, true, false, dy);
    } else if (transpose_x) {
      CalcInputGrad(context, y, false, false, dout, true, false, dx);
      CalcInputGrad(context, x, false, false, dout, false, true, dy);
    } else if (transpose_y) {
      CalcInputGrad(context, dout, false, false, y, false, true, dx);
      CalcInputGrad(context, dout, true, true, x, false, true, dy);
    } else {
      CalcInputGrad(context, dout, false, false, y, true, false, dx);
      CalcInputGrad(context, x, true, true, dout, false, true, dy);
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }
    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }
  }
};
M
Markus Kliegl 已提交
324

325 326 327 328 329 330
framework::DDim GetDimForInput(const framework::InferShapeContext &ctx,
                               std::string input_name) {
  auto shape = ctx.Attrs().Get<std::vector<int>>("fused_reshape_" + input_name);
  auto axis =
      ctx.Attrs().Get<std::vector<int>>("fused_transpose_" + input_name);
  auto dim = ctx.GetInputDim(input_name);
331 332 333 334 335 336

  PADDLE_ENFORCE_GT(dim.size(), 0,
                    platform::errors::InvalidArgument(
                        "The Input(%s) has not been initialized properly. The "
                        "shape of Input(%s) = [%s].",
                        dim));
337 338

  // if mkldnn reshape+transpose+matmul fuse activated
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
  if (!shape.empty() && !axis.empty()) {
    PADDLE_ENFORCE_GE(
        shape.size(), 2,
        platform::errors::InvalidArgument(
            "shape_%s attribute of MatMulOp was implemented for 2, 3 "
            "or 4 dimensions.",
            input_name));
    PADDLE_ENFORCE_LE(
        shape.size(), 4,
        platform::errors::InvalidArgument(
            "shape_%s attribute of MatMulOp was implemented for 2, 3 "
            "or 4 dimensions.",
            input_name));
    PADDLE_ENFORCE_EQ(
        shape.size(), axis.size(),
        platform::errors::InvalidArgument(
            "Ranks of shape_%s and axis_%s attributes of MatMulOp "
            "must be equal.",
            input_name, input_name));
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

    int num_negative = std::count(shape.begin(), shape.end(), -1);
    PADDLE_ENFORCE_LE(num_negative, 1,
                      platform::errors::InvalidArgument(
                          "The max number of -1 in fused_reshape_%s is 1 "
                          "but received %d.",
                          input_name, num_negative));

    auto it_zero = std::find(shape.begin(), shape.end(), 0);
    if (it_zero != shape.end()) {
      for (uint64_t i = 0; i < shape.size(); i++) {
        if (shape[i] == 0) {
          PADDLE_ENFORCE_LT(i, dim.size(),
                            platform::errors::InvalidArgument(
                                "The index of 0 in fused_reshape_%s ",
                                "should be less than output dim size, ",
                                "but the index is %d and output dim size is %d",
                                input_name, i, dim.size()));
          shape[i] = dim.at(i);
        }
      }
    }

    // if "-1" is present then one of reshape dims must be infered
    auto it_negative = std::find(shape.begin(), shape.end(), -1);
    if (it_negative != shape.end()) {
      int64_t dim_product = 1;
      for (int i = 0; i < dim.size(); i++) {
        dim_product *= dim.at(i);
      }

      int64_t shape_product = std::accumulate(shape.begin(), shape.end(), -1,
                                              std::multiplies<int>());
      int index = std::distance(shape.begin(), it_negative);
      shape[index] = dim_product / shape_product;
    }

395 396 397 398 399
    dim = dim.reshape(shape).transpose(axis);
  }
  return dim;
}

400 401 402 403 404 405 406 407
template <typename DeviceContext, typename T>
class MatMulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void MatMul(const framework::ExecutionContext &context,
              const framework::Tensor &a, bool trans_a,
              const framework::Tensor &b, bool trans_b, bool flag,
              framework::Tensor *out) const {
    out->mutable_data<T>(context.GetPlace());
408 409 410
    auto blas = pten::funcs::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = pten::funcs::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = pten::funcs::CreateMatrixDescriptor(b.dims(), 0, trans_b);
411 412

    int head_number = 1;
413 414
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
    head_number = context.Attr<int>("head_number");
#endif

    if (head_number <= 1 && a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
    blas.MatMul(a, mat_dim_a, b, mat_dim_b,
                static_cast<T>(context.Attr<float>("alpha")), out,
                static_cast<T>(flag));
  }

  void CalcInputGrad(const framework::ExecutionContext &context,
                     const framework::Tensor &a, bool trans_a,
                     bool is_fold_init_dims_a, const framework::Tensor &b,
                     bool trans_b, bool is_fold_init_dims_b, bool flag,
                     framework::Tensor *out) const {
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, flag, out);
    } else {
      auto &ctx = context.template device_context<DeviceContext>();
      MatMul(context, is_fold_init_dims_a
                          ? FoldInitDims(a)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
             trans_a, is_fold_init_dims_b
                          ? FoldInitDims(b)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
             trans_b, flag, out);
    }
  }

  void Compute(const framework::ExecutionContext &context) const override {
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout = *context.Input<framework::LoDTensor>("DOut");
    auto *ddx = context.Input<framework::LoDTensor>("DDX");
    auto *ddy = context.Input<framework::LoDTensor>("DDY");

    auto *dx = context.Output<framework::LoDTensor>("DX");
    auto *dy = context.Output<framework::LoDTensor>("DY");
    auto *ddout = context.Output<framework::LoDTensor>("DDOut");

    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    framework::DDim ddout_dims;
    if (ddout) {
      ddout_dims = ddout->dims();
      if (ddout_dims != dout.dims()) {
        ddout->Resize(dout.dims());
      }
    }

    bool ddout_flag = false;
    if (ddx) {
      auto ddx_mat = *ddx;
      if (ddx_mat.dims() != x.dims()) {
        ddx_mat.Resize(x.dims());
      }
      if (dy) {
        if (transpose_x && transpose_y) {
          // dy = dout' * ddx'
          CalcInputGrad(context, dout, true, true, ddx_mat, true, false, false,
                        dy);
        } else if (transpose_x) {
          // dy = ddx * dout
          CalcInputGrad(context, ddx_mat, false, false, dout, false, true,
                        false, dy);
        } else if (transpose_y) {
          // dy = dout' * ddx
          CalcInputGrad(context, dout, true, true, ddx_mat, false, true, false,
                        dy);
        } else {
          // dy = ddx' * dout
          CalcInputGrad(context, ddx_mat, true, true, dout, false, true, false,
                        dy);
        }
      }

      if (ddout) {
        CalcInputGrad(context, ddx_mat, transpose_x, true, y, transpose_y,
                      false, ddout_flag, ddout);
        ddout_flag = true;
      }
    }

    if (ddy) {
      auto ddy_mat = *ddy;
      if (ddy_mat.dims() != y.dims()) {
        ddy_mat.Resize(y.dims());
      }
      if (dx) {
        if (transpose_x && transpose_y) {
          // dx = ddy' * dout'
          CalcInputGrad(context, ddy_mat, true, true, dout, true, false, false,
                        dx);
        } else if (transpose_x) {
          // dx = ddy * dout'
          CalcInputGrad(context, ddy_mat, false, false, dout, true, false,
                        false, dx);
        } else if (transpose_y) {
          // dx = dout * ddy
          CalcInputGrad(context, dout, false, false, ddy_mat, false, true,
                        false, dx);
        } else {
          // dx = dout * ddy'
          CalcInputGrad(context, dout, false, false, ddy_mat, true, false,
                        false, dx);
        }
      }

      if (ddout) {
        CalcInputGrad(context, x, transpose_x, true, ddy_mat, transpose_y,
                      false, ddout_flag, ddout);
      }
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }

    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }

    if (ddout) {
      if (ddout_dims != dout.dims()) {
        ddout->Resize(ddout_dims);
      }
    }
  }
};

M
Markus Kliegl 已提交
576 577 578 579 580
class MatMulOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
581
  void InferShape(framework::InferShapeContext *context) const override {
582 583 584
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out", "matmul");
M
Markus Kliegl 已提交
585

586 587
    auto dim_x = GetDimForInput(*context, "X");
    auto dim_y = GetDimForInput(*context, "Y");
588 589 590 591 592 593
    auto mat_dim_x = pten::funcs::CreateMatrixDescriptor(
        RowMatrixFromVector(dim_x), 0,
        context->Attrs().Get<bool>("transpose_X"));
    auto mat_dim_y = pten::funcs::CreateMatrixDescriptor(
        ColumnMatrixFromVector(dim_y), 0,
        context->Attrs().Get<bool>("transpose_Y"));
C
chengduoZH 已提交
594

595 596 597 598 599 600 601
    if (mat_dim_x.width_ == -1) {
      mat_dim_x.width_ = mat_dim_y.height_;
    }
    if (mat_dim_y.height_ == -1) {
      mat_dim_y.height_ = mat_dim_x.width_;
    }

P
phlrain 已提交
602
    if (context->IsRuntime()) {
603
      PADDLE_ENFORCE_EQ(
604 605
          mat_dim_x.batch_size_ == mat_dim_y.batch_size_ ||
              mat_dim_x.batch_size_ == 0 || mat_dim_y.batch_size_ == 0,
606 607 608 609 610 611
          true, platform::errors::InvalidArgument(
                    "The batch size of the two matrices should be equal, or "
                    "at least one is zero.\n"
                    "But received X's shape: %s, Y's shape: %s.",
                    DumpMatrixShape(mat_dim_x).c_str(),
                    DumpMatrixShape(mat_dim_y).c_str()));
P
phlrain 已提交
612
    }
613
    int64_t dim_out_y = mat_dim_y.width_;
614 615
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
616
    int head_number = context->Attrs().Get<int>("head_number");
617
    bool split_vertical_y = (mat_dim_x.width_ != mat_dim_y.height_);
618 619 620
    if (context->IsRuntime()) {
      PADDLE_ENFORCE_LE(
          head_number, mat_dim_x.width_,
621 622 623 624 625
          platform::errors::InvalidArgument(
              "Unsatisfied mkl acceleration library requirements: "
              "The number of heads "
              "(%d) must be equal to X's width. But received X's shape: %s.",
              head_number, DumpMatrixShape(mat_dim_x).c_str()));
626 627 628 629

      if (!split_vertical_y && head_number > 0) {
        dim_out_y = head_number * mat_dim_y.width_;
      }
630
    }
631
#else
632 633 634
    PADDLE_ENFORCE_EQ(mat_dim_x.width_, mat_dim_y.height_,
                      platform::errors::InvalidArgument(
                          "Input X's width should be equal to the Y's height, "
635
                          "but received X's shape: [%s], "
636 637
                          "Y's shape: [%s].",
                          dim_x, dim_y));
638 639
#endif

640
    std::vector<int64_t> dim_out;
Y
Yu Yang 已提交
641
    if (mat_dim_x.batch_size_ != 0) {
642
      dim_out = pten::vectorize(dim_x);
Y
Yu Yang 已提交
643
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
644
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
645
    } else if (mat_dim_y.batch_size_ != 0) {
646
      dim_out = pten::vectorize(dim_y);
Y
Yu Yang 已提交
647
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
648
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
649
    } else {
650
      dim_out = {mat_dim_x.height_, dim_out_y};
M
Markus Kliegl 已提交
651 652
    }

Y
Yu Yang 已提交
653 654 655
    if (dim_x.size() == 1 && dim_out[dim_out.size() - 2] == 1) {
      std::swap(dim_out[dim_out.size() - 2], dim_out[dim_out.size() - 1]);
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
656 657
    }

Y
Yu Yang 已提交
658 659
    if (dim_y.size() == 1 && dim_out[dim_out.size() - 1] == 1) {
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
660 661
    }

Y
Yu Yang 已提交
662 663
    if (dim_out.empty()) {
      dim_out = {1};
M
Markus Kliegl 已提交
664
    }
665

666
    framework::DDim ddim_out = pten::make_ddim(dim_out);
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694

#ifdef PADDLE_WITH_MKLDNN
    //  if mkldnn matmul+transpose+reshape fuse activated
    auto reshape_out =
        context->Attrs().Get<std::vector<int>>("fused_reshape_Out");
    auto transpose_out =
        context->Attrs().Get<std::vector<int>>("fused_transpose_Out");

    if (!reshape_out.empty() && !transpose_out.empty()) {
      auto reshape_out_size = reshape_out.size();
      auto transpose_out_size = transpose_out.size();
      PADDLE_ENFORCE_EQ(transpose_out_size, 4,
                        platform::errors::InvalidArgument(
                            "transpose_out supported rank is 4, "
                            "received %d",
                            transpose_out_size));
      const std::vector<int> supported_axis{0, 2, 1, 3};
      const bool supported_transpose_axis = std::equal(
          transpose_out.begin(), transpose_out.end(), supported_axis.begin());
      PADDLE_ENFORCE_EQ(
          supported_transpose_axis, true,
          platform::errors::InvalidArgument(
              "supported transpose axis for the fuse are {0, 2, 1, 3}"));
      PADDLE_ENFORCE_EQ(
          reshape_out_size, 3,
          platform::errors::InvalidArgument("reshape_out supported rank is 3, "
                                            "received %d",
                                            reshape_out_size));
695

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
      // int num_negative = std::count(reshape_out.begin(), reshape_out.end(),
      // -1);
      // PADDLE_ENFORCE_LE(num_negative, 1,
      //                   platform::errors::InvalidArgument(
      //                       "The max number of -1 in fused_reshape_Out is 1 "
      //                       "but received %d.",
      //                       num_negative));

      // auto it_zero = std::find(reshape_out.begin(), reshape_out.end(), 0);
      // if (it_zero != reshape_out.end()) {
      //   for (uint64_t i = 0; i < reshape_out.size(); i++) {
      //     if (reshape_out[i] == 0) {
      //       PADDLE_ENFORCE_LT(
      //           i, ddim_out.size(),
      //           platform::errors::InvalidArgument(
      //               "The index of 0 in fused_reshape_Out ",
      //               "should be less than output dim size, ",
      //               "but the index is %d and output dim size is %d", i,
      //               ddim_out.size()));
      //       reshape_out[i] = ddim_out.at(i);
      //     }
      //   }
      // }
719 720

      // if "-1" is present then one of reshape dims must be infered
721
      auto it = std::find(reshape_out.begin(), reshape_out.end(), -1);
722 723 724
      if (it != reshape_out.end()) {
        int index = std::distance(reshape_out.begin(), it);

725
        auto ddim_out_vec = pten::vectorize(ddim_out);
726 727 728 729 730 731 732 733 734 735

        int ddim_out_product =
            std::accumulate(ddim_out_vec.begin(), ddim_out_vec.end(), 1,
                            std::multiplies<int>());
        int reshape_out_product = std::accumulate(
            reshape_out.begin(), reshape_out.end(), -1, std::multiplies<int>());

        reshape_out[index] = ddim_out_product / reshape_out_product;
      }

736 737 738 739 740 741 742 743 744
      framework::DDim shape_out =
          ddim_out.transpose(transpose_out).reshape(reshape_out);
      context->SetOutputDim("Out", shape_out);
    } else {
      context->SetOutputDim("Out", ddim_out);
    }
#else
    context->SetOutputDim("Out", ddim_out);
#endif
M
Markus Kliegl 已提交
745 746
    context->ShareLoD("X", /*->*/ "Out");
  }
747 748 749

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
750 751
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
752 753

#ifdef PADDLE_WITH_MKLDNN
754
    using dnnl::memory;
755
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
756 757 758 759 760 761 762
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
763 764 765 766 767 768

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
769 770 771
      return framework::OpKernelType(
          framework::TransToProtoVarType(tensor.dtype()), tensor.place(),
          tensor.layout());
772 773 774 775 776
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
M
Markus Kliegl 已提交
777 778 779 780
};

class MatMulOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
781
  void Make() override {
M
Markus Kliegl 已提交
782 783 784 785 786 787 788 789 790 791 792
    AddInput("X", "The first input of MatMul op");
    AddInput("Y", "The second input of MatMul op");
    AddOutput("Out", "The output of MatMul op");
    AddAttr<bool>("transpose_X",
                  R"DOC(If true, use the transpose of `X`.
        )DOC")
        .SetDefault(false);
    AddAttr<bool>("transpose_Y",
                  R"DOC(If true, use the transpose of `Y`.
        )DOC")
        .SetDefault(false);
S
sneaxiy 已提交
793
    AddAttr<float>("alpha", "The scale of Out").SetDefault(1.0f);
794 795 796
    AddAttr<bool>(
        "use_mkldnn",
        "(bool, default false) Indicates if MKL-DNN kernel will be used")
797 798
        .SetDefault(false)
        .AsExtra();
799 800
    AddAttr<std::vector<int>>("fused_reshape_X",
                              R"DOC(Shape of fused reshape of `X` input.)DOC")
801 802
        .SetDefault({})
        .AsExtra();
803 804
    AddAttr<std::vector<int>>("fused_reshape_Y",
                              R"DOC(Shape of fused reshape of `Y` input.)DOC")
805 806
        .SetDefault({})
        .AsExtra();
807 808
    AddAttr<std::vector<int>>("fused_transpose_X",
                              R"DOC(Axis of fused transpose of `X` input.)DOC")
809 810
        .SetDefault({})
        .AsExtra();
811 812
    AddAttr<std::vector<int>>("fused_transpose_Y",
                              R"DOC(Axis of fused transpose of `Y` input.)DOC")
813 814
        .SetDefault({})
        .AsExtra();
815 816 817 818
    AddAttr<std::vector<int>>(
        "fused_reshape_Out",
        R"DOC(When MKLDNN MatMul_transpose_reshape fuse activated, "
              "it's a shape atribute of fused reshape for `Out` output.)DOC")
819 820
        .SetDefault({})
        .AsExtra();
821 822 823 824
    AddAttr<std::vector<int>>(
        "fused_transpose_Out",
        R"DOC(When MKLDNN MatMul_transpose_reshape fuse activated, "
              "it's a axis atribute of fused transpose for `Out` output.)DOC")
825 826
        .SetDefault({})
        .AsExtra();
827 828 829 830
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
831 832
        .SetDefault(false)
        .AsExtra();
833 834 835 836
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
837 838
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
839
    /* int8 parameters */
840 841
    AddAttr<float>("Scale_x",
                   "(float, default 1.0f), The quantize scale of X tensor")
842 843
        .SetDefault(1.0f)
        .AsExtra();
844 845
    AddAttr<float>("Scale_y",
                   "(float, default 1.0f), The quantize scale of Y tensor")
846 847
        .SetDefault(1.0f)
        .AsExtra();
848 849
    AddAttr<float>("Scale_out",
                   "(float, default 1.0f), The quantize scale of output data")
850 851
        .SetDefault(1.0f)
        .AsExtra();
852 853 854
    AddAttr<bool>("force_fp32_output",
                  "(bool, default false) Force INT8 kernel output FP32, only "
                  "used in MKL-DNN INT8")
855 856
        .SetDefault(false)
        .AsExtra();
857

858 859
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
860 861 862
    AddAttr<int>("head_number", "The number of heads of the matrix")
        .SetDefault(1);
#endif
M
Markus Kliegl 已提交
863
    AddComment(R"DOC(
K
kexinzhao 已提交
864 865
MatMul Operator.
This operator is used to perform (batched) matrix multiplication
M
Markus Kliegl 已提交
866 867 868 869 870 871 872 873 874 875 876 877
over the last two dimensions of the input tensors `X` and `Y`.
If a transpose flag is specified, the last two dimensions of the
tensor are transposed. If the tensor is rank-1 of shape [D], then
for `X` it is treated as [1, D] in nontransposed form and as [D, 1]
in transposed form, whereas for `Y` it is the opposite: It is treated
as [D, 1] in nontransposed form and as [1, D] in transposed form.
Examples without transpose:
- X: [K], Y: [K] => Out: [1]
- X: [K], Y: [K, N] => Out: [N]
- X: [B, M, K], Y: [K] => Out: [B, M]
- X: [M, K], Y: [B, K, N] => Out: [B, M, N]
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, N]
C
chengduoZH 已提交
878
- X: [B, ..., M, K], Y: [B, ..., K, N] => Out: [B, ..., M, N]
879 880
Example of matrix multiplication with head_number of H
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, H * N]
M
Markus Kliegl 已提交
881 882
The behavior is designed to be similar to the `numpy.matmul` function.
The differences are:
C
chengduoZH 已提交
883 884
- When the rank of the input data is less than or equal to 3, it
  is similar to the `numpy.matmul` function.
C
chengduoZH 已提交
885
- When the rank of the input is greater than 3, the rank of X and
C
chengduoZH 已提交
886
  Y must be equal, and the first `rank - 2` dimensions must be equal.
M
Markus Kliegl 已提交
887
- We add `transpose_X` and `transpose_Y` flags.
888 889 890
- We add `head_number` attribute, which is used to multiple two matrixes head
  by head, and eventually concatenates the output of several (head_number)
  small matrixes multiplication.
M
Markus Kliegl 已提交
891
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
892
or not. But the output only shares the LoD information with input `X`.
M
Markus Kliegl 已提交
893 894 895 896 897 898 899 900 901
)DOC");
  }
};

class MatMulOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
902
  void InferShape(framework::InferShapeContext *context) const override {
903 904 905 906
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "matmul");
M
Markus Kliegl 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919
    auto x_dims = context->GetInputDim("X");
    auto y_dims = context->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (context->HasOutput(x_grad_name)) {
      context->SetOutputDim(x_grad_name, x_dims);
    }
    if (context->HasOutput(y_grad_name)) {
      context->SetOutputDim(y_grad_name, y_dims);
    }
  }
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
M
Markus Kliegl 已提交
935 936
};

H
hong 已提交
937 938
template <typename T>
class MatMulOpGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
939
 public:
H
hong 已提交
940
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
941 942

 protected:
943
  void Apply(GradOpPtr<T> retv) const override {
Y
Yu Yang 已提交
944
    retv->SetType("matmul_grad");
H
hong 已提交
945 946 947 948 949 950
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
951 952
  }
};
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

class MatMulOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput("DOut"), "Input", "DOut", "matmul");

    if (context->HasOutput("DX") && context->HasInput("DDY")) {
      context->ShareDim("X", "DX");
    }

    if (context->HasOutput("DY") && context->HasInput("DDX")) {
      context->ShareDim("Y", "DY");
    }

    if (context->HasOutput("DDOut") &&
        (context->HasInput("DDY") || context->HasInput("DDX"))) {
      context->ShareDim("DOut", "DDOut");
    }
  }
};

template <typename T>
class MatMulOpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> retv) const override {
    retv->SetType("matmul_grad_grad");
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));

    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddy = this->OutputGrad(framework::GradVarName("Y"));

    if (!ddx.empty() || !ddy.empty()) {
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    }
    retv->SetOutput(
        "DX", ddy.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    retv->SetOutput(
        "DY", ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));

    retv->SetAttrMap(this->Attrs());
  }
};

M
Markus Kliegl 已提交
1008 1009 1010 1011
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
1012
REGISTER_OPERATOR(matmul, ops::MatMulOp, ops::MatMulOpMaker,
H
hong 已提交
1013 1014
                  ops::MatMulOpGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpGradMaker<paddle::imperative::OpBase>);
1015 1016 1017 1018
REGISTER_OPERATOR(matmul_grad, ops::MatMulOpGrad,
                  ops::MatMulOpDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(matmul_grad_grad, ops::MatMulOpDoubleGrad);
M
Markus Kliegl 已提交
1019
REGISTER_OP_CPU_KERNEL(
Y
yuyang18 已提交
1020
    matmul, ops::MatMulKernel<paddle::platform::CPUDeviceContext, float>,
1021
    ops::MatMulKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
1022 1023
REGISTER_OP_CPU_KERNEL(
    matmul_grad,
Y
yuyang18 已提交
1024
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, float>,
1025
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, double>);
Y
Yu Yang 已提交
1026

1027 1028 1029 1030 1031
REGISTER_OP_CPU_KERNEL(
    matmul_grad_grad,
    ops::MatMulDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MatMulDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);

1032
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yu Yang 已提交
1033
REGISTER_OP_CUDA_KERNEL(
Y
yuyang18 已提交
1034 1035 1036 1037
    matmul, ops::MatMulKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MatMulKernel<paddle::platform::CUDADeviceContext,
                      paddle::platform::float16>);
Y
Yu Yang 已提交
1038 1039
REGISTER_OP_CUDA_KERNEL(
    matmul_grad,
Y
yuyang18 已提交
1040 1041 1042 1043
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext,
                          paddle::platform::float16>);
1044 1045 1046 1047
REGISTER_OP_CUDA_KERNEL(
    matmul_grad_grad,
    ops::MatMulDoubleGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulDoubleGradKernel<paddle::platform::CUDADeviceContext, double>);
Y
Yu Yang 已提交
1048
#endif
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

REGISTER_OP_VERSION(matmul)
    .AddCheckpoint(
        R"ROC(Register matmul for adding the attribute of
       fused_reshape_Y)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "fused_reshape_Y",
            "In order to support the function of fused the input Y "
            " and input X into the input X when "
            "using the operator of matmul, and get raw shape of input Y.",
            std::vector<int>{}));