hierarchical_sigmoid_op.cc 10.2 KB
Newer Older
Y
Yancey1989 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
weixing02 已提交
15
#include "paddle/fluid/operators/hierarchical_sigmoid_op.h"
16
#include <string>
W
weixing02 已提交
17
#include <vector>
Y
Yancey1989 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
namespace paddle {
namespace operators {

/**
 * Organize the classes into a binary tree. At each node, a sigmoid function
 * is used to calculate the probability of belonging to the right branch.
 * This idea is from "F. Morin, Y. Bengio (AISTATS 05):
 * Hierarchical Probabilistic Neural Network Language Model."
 *
 * Here we uses a simple way of making the binary tree.
 * Assuming the number of classes C = 6,
 * The classes are organized as a binary tree in the following way:
 *
 * @code{.py}
 * *-*-*- 2
 * | | |- 3
 * | |
 * | |-*- 4
 * |   |- 5
 * |
 * |-*- 0
 *   |- 1
 * @endcode
 *
 * where * indicates an internal node, and each leaf node represents a class.
 * - Node 0 ... C-2 are internal nodes.
 * - Node C-1 ... 2C-2 are leaf nodes.
 * - Class c is represented by leaf node \f$c+C-1\f$.
 *
 * We assign an id for each node:
 * - the id of root be 0.
 * - the left child of a node i is 2*i+1.
 * - the right child of a node i is 2*i+2.
 *
 * It's easy to see that:
 * - the parent of node i is \f$\left\lfloor(i-1)/2\right\rfloor\f$.
 * - the j-th level ancestor of node i is
 * \f$\left\lfloor(i+1)/2^{j+1}\right\rfloor - 1\f$.
 * - A node i is a left child of its parent if \f$(i-1)\%2==0\f$.
 *
 */

class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
Yancey1989 已提交
64
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
W
weixing02 已提交
65
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should not be null.");
Y
Yancey1989 已提交
66
    PADDLE_ENFORCE(ctx->HasInput("W"), "Input(W) should not be null.");
Y
Yancey1989 已提交
67
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null.");
W
weixing02 已提交
68 69
    PADDLE_ENFORCE(ctx->HasOutput("PreOut"),
                   "Output(PreOut) should not be null.");
70 71 72 73 74
    auto with_prefetch = ctx->Attrs().Get<bool>("remote_prefetch");
    if (with_prefetch) {
      PADDLE_ENFORCE(ctx->HasOutput("W_Out"),
                     "Output(W_Out) should not be null.");
    }
Y
Yancey1989 已提交
75
    const int64_t batch_size = ctx->GetInputDim("X")[0];
Y
Yancey1989 已提交
76
    std::vector<int64_t> output_shape({batch_size, 1});
Y
Yancey1989 已提交
77
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
J
JiabinYang 已提交
78
    ctx->ShareLoD("X", /*->*/ "Out");
Y
Yancey1989 已提交
79
  }
Y
Yancey1989 已提交
80 81

 protected:
W
weixing02 已提交
82
  framework::OpKernelType GetExpectedKernelType(
Y
Yancey1989 已提交
83 84
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
J
JiabinYang 已提交
85
        framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
Y
Yancey1989 已提交
86 87
        ctx.GetPlace());
  }
Y
Yancey1989 已提交
88 89
};

W
weixing02 已提交
90
template <typename AttrType>
Y
Yancey1989 已提交
91 92
class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
W
weixing02 已提交
93
  void Make() override {
Y
Yancey1989 已提交
94
    AddInput("X",
J
JiabinYang 已提交
95
             "(LoDTensor, required) The input tensor with shape [N, D], "
G
guosheng 已提交
96
             "where N is the size of mini-batch, and D is the feature size.");
Y
Yancey1989 已提交
97
    AddInput("W",
J
JiabinYang 已提交
98
             "(LoDTensor, required), The parameters of hierarchical "
G
guosheng 已提交
99
             "sigmoid operator, each of them is a 2-D tensor, the shape is"
100
             "[K, D]. Which K is the num of non-leaf node in Path Tree");
W
weixing02 已提交
101
    AddInput("Label",
J
JiabinYang 已提交
102
             "(LoDTensor, required), The labels of training data. It's a"
G
guosheng 已提交
103
             "tensor with shape [N, 1].");
104
    AddInput("PathTable",
J
JiabinYang 已提交
105
             "(LoDTensor, optional), The Path Table from root to current word"
106 107
             "it should have shape like [N, L], L is the length of the Path")
        .AsDispensable();
J
JiabinYang 已提交
108
    AddInput(
J
JiabinYang 已提交
109
        "PathCode",
J
JiabinYang 已提交
110 111 112
        "(LoDTensor, optional), The Code on each Node of the Path from root "
        "to current word"
        "it should have shape like [N, L], L is the length of the Path")
113
        .AsDispensable();
Y
Yancey1989 已提交
114
    AddInput("Bias",
J
JiabinYang 已提交
115
             "(LoDTensor, optional), The bias is a tensor with shape or "
116
             "[num_classes, 1]"
117 118
             "[num_classes - 1, 1].")
        .AsDispensable();
J
JiabinYang 已提交
119 120 121 122
    AddOutput(
        "Out",
        "(LoDTensor, required) The output of hierarchical sigmoid operator."
        "The shape is [N, 1].");
W
weixing02 已提交
123
    AddOutput("PreOut",
J
JiabinYang 已提交
124
              "(LoDTensor, required) A intermedia 2-D tensor with shape "
G
guosheng 已提交
125 126
              "[batch_size, code_length], where code_length represents the "
              "maximum path length from root to leaf nodes.")
W
weixing02 已提交
127
        .AsIntermediate();
128 129 130 131 132
    AddOutput(
        "W_Out",
        "(LoDTensor, optinal) using input 'W' as Output to make it mutable"
        "When we are using prefetch")
        .AsIntermediate();
J
JiabinYang 已提交
133
    AddAttr<AttrType>("num_classes", "(int, optional), The number of classes")
Y
Yancey1989 已提交
134
        .SetDefault(2);
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    // for parameter prefetch
    AddAttr<bool>("remote_prefetch", "").SetDefault(false);
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
    AddAttr<std::vector<int>>("height_sections",
                              "Height for each output SelectedRows.")
        .SetDefault(std::vector<int>({}));
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
        .SetDefault({});
    AddAttr<std::vector<std::string>>(
        "table_names",
        "(string vector, the splited table names that will be fetched from "
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});
Y
Yancey1989 已提交
152 153
    AddComment(R"DOC(
The hierarchical sigmoid operator organize the classes into a binary tree.
W
weixing02 已提交
154
At each node, a sigmoid function is used to calculate the probability of
W
weixing02 已提交
155 156
belonging to the right branch. This idea is from
"F. Morin, Y. Bengio (AISTATS 05):
Y
Yancey1989 已提交
157 158
Hierarchical Probabilistic Neural Network Language Model."
      )DOC");
J
JiabinYang 已提交
159 160 161 162
    AddAttr<bool>("is_sparse",
                  "(boolean, default false) "
                  "Sparse update.")
        .SetDefault(false);
Y
Yancey1989 已提交
163 164 165
  }
};

W
weixing02 已提交
166 167 168 169 170
class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("W"), "Input(W) should not be null.");
W
weixing02 已提交
171
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should not be null.");
J
JiabinYang 已提交
172 173
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@Grad) should not be null");
W
weixing02 已提交
174 175 176
    PADDLE_ENFORCE(ctx->HasInput("PreOut"),
                   "Input(Preout) should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("W")),
J
JiabinYang 已提交
177 178 179
                   "Output(W@Grad should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@Grad should not be null.");
180 181 182 183

    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
      ctx->SetOutputDim(framework::GradVarName("Bias"),
                        ctx->GetInputDim("Bias"));
J
JiabinYang 已提交
184
    }
185
    ctx->SetOutputDim(framework::GradVarName("W"), ctx->GetInputDim("W"));
W
weixing02 已提交
186
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
J
JiabinYang 已提交
187
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
W
weixing02 已提交
188 189 190 191 192 193
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
J
JiabinYang 已提交
194
        framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
W
weixing02 已提交
195 196 197 198
        ctx.GetPlace());
  }
};

J
JiabinYang 已提交
199 200 201 202 203
class HierarchicalSigmoidGradOpGradVarTypeInference
    : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
204 205 206 207 208 209 210 211 212 213
    auto w_grad_var_name = op_desc.Output(framework::GradVarName("W")).front();
    auto bias_grad_var_name_vec =
        op_desc.Output(framework::GradVarName("Bias"));
    std::string bias_grad_var_name;
    bool hasBias = false;
    if (bias_grad_var_name_vec.size()) {
      hasBias = true;
      bias_grad_var_name =
          op_desc.Output(framework::GradVarName("Bias")).front();
    }
J
JiabinYang 已提交
214 215 216
    auto attr = op_desc.GetAttr("is_sparse");
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
217 218 219
      VLOG(30) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
               << " is set to SelectedRows";
      block->Var(w_grad_var_name)
J
JiabinYang 已提交
220 221
          ->SetType(framework::proto::VarType::SELECTED_ROWS);
    } else {
222 223 224
      VLOG(30) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
               << " is set to LoDTensor";
      block->Var(w_grad_var_name)
J
JiabinYang 已提交
225
          ->SetType(framework::proto::VarType::LOD_TENSOR);
226 227 228 229 230 231
    }
    if (hasBias) {
      VLOG(30) << "hierarchical_sigmoid_grad op "
               << framework::GradVarName("Bias") << " is set to LoDTensor";
      block->Var(bias_grad_var_name)
          ->SetType(framework::proto::VarType::LOD_TENSOR);
J
JiabinYang 已提交
232
    }
233
    block->Var(w_grad_var_name)->SetDataType(block->Var("W")->GetDataType());
J
JiabinYang 已提交
234 235 236
  }
};

Y
Yancey1989 已提交
237 238 239 240
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
W
weixing02 已提交
241 242 243
REGISTER_OPERATOR(hierarchical_sigmoid, ops::HierarchicalSigmoidOp,
                  ops::HierarchicalSigmoidOpMaker<int>,
                  paddle::framework::DefaultGradOpDescMaker<true>);
J
JiabinYang 已提交
244 245
REGISTER_OPERATOR(hierarchical_sigmoid_grad, ops::HierarchicalSigmoidGradOp,
                  ops::HierarchicalSigmoidGradOpGradVarTypeInference);
W
weixing02 已提交
246 247 248 249 250 251 252 253 254 255 256
REGISTER_OP_CPU_KERNEL(
    hierarchical_sigmoid,
    ops::HierarchicalSigmoidOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::HierarchicalSigmoidOpKernel<paddle::platform::CPUDeviceContext,
                                     double>);
REGISTER_OP_CPU_KERNEL(
    hierarchical_sigmoid_grad,
    ops::HierarchicalSigmoidGradOpKernel<paddle::platform::CPUDeviceContext,
                                         float>,
    ops::HierarchicalSigmoidGradOpKernel<paddle::platform::CPUDeviceContext,
                                         double>);