distribute_transpiler.py 26.7 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
T
done  
typhoonzero 已提交
16 17 18 19
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
20
from distributed_spliter import *
T
typhoonzero 已提交
21
import math
22
from . import core
T
done  
typhoonzero 已提交
23 24


T
typhoonzero 已提交
25 26 27 28 29 30
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
31

T
typhoonzero 已提交
32 33
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
34 35


36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
class UnionFind(object):
    """ Union-find data struct.
    
    Union-find is a data struct that keeps track of a set of elements partitioned
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


87 88 89 90
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
91 92 93 94 95
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
96
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
97 98
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
99

T
typhoonzero 已提交
100 101
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
102 103
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
T
typhoonzero 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
122
        # update split_count after aligning
T
typhoonzero 已提交
123
        split_count = int(math.ceil(var_numel / float(block_size)))
T
typhoonzero 已提交
124
        print("###split var ", var.name, var.shape, block_size, split_count)
T
typhoonzero 已提交
125 126 127 128 129 130 131 132
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
133 134 135 136 137 138 139 140 141
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
142 143
            Transpile the program to distributed data-parallelism programs.
            The main_program will be transformed to use a remote parameter server
T
done  
typhoonzero 已提交
144
            to do parameter optimization. And the optimization graph will be put
145
            into a parameter server program.
T
done  
typhoonzero 已提交
146

147
            Use different methods to split trainable variables to different
T
done  
typhoonzero 已提交
148 149 150 151 152
            parameter servers.

            :param optimize_ops: op list of optimization, should be the
                                 return value of Optimizer.minimize
            :type optimize_ops: list
153
            :param program: program to optimize, default is default_main_program
T
done  
typhoonzero 已提交
154 155 156 157
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
            :return: return a list of programs
        """
T
typhoonzero 已提交
158
        assert (callable(split_method))
T
done  
typhoonzero 已提交
159 160
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
161
        self.program = program
T
done  
typhoonzero 已提交
162
        self.trainers = trainers
T
typhoonzero 已提交
163
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
164
        # steps to transpile:
165
        # 1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
T
typhoonzero 已提交
166 167 168
        # 2. modify trainer program add split_op to each Grad.
        # 3. append send_op to trainer.
        # 4. append concat_op to trainer to update local weights.
169
        # 5. create new program for parameter server.
T
typhoonzero 已提交
170
        # 6. create parameter server program by split_method generated endpoint->VarBlock
T
typhoonzero 已提交
171

T
typhoonzero 已提交
172
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
173 174

        # step1
T
typhoonzero 已提交
175 176
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
T
typhoonzero 已提交
177
        # TODO: add split selected rows support
T
typhoonzero 已提交
178 179
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
180
        # step2
T
typhoonzero 已提交
181
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
182 183 184

        # step3
        send_inputs = []
T
typhoonzero 已提交
185
        send_outputs = []
T
typhoonzero 已提交
186 187 188 189
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])

T
typhoonzero 已提交
190 191
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
T
typhoonzero 已提交
192 193 194
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
195 196
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
197
        eplist = split_method(send_inputs, pserver_endpoints)
198
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
199 200 201 202 203 204 205 206
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
207

T
typhoonzero 已提交
208 209 210 211 212 213
        rpc_client_var = program.global_block().create_var(
            name="RPC_CLIENT_VAR",
            psersistable=True,
            dtype='float32',  # dtype and shape is not used in fact
            shape=[0])

214
        # create send_op
T
typhoonzero 已提交
215 216 217
        send_op = program.global_block().append_op(
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
218 219
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
T
typhoonzero 已提交
220
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
221 222 223
                   "epmap": eplist})
        # step4
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
224 225
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
226 227 228
            orig_param = program.global_block().vars[varname]
            concat = program.global_block().append_op(
                type="concat",
T
typhoonzero 已提交
229
                inputs={"X": splited_var},
T
typhoonzero 已提交
230
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
231
                attrs={"axis": 0})
T
typhoonzero 已提交
232 233

    def _create_vars_from_blocklist(self, program, block_list):
234
        # Create respective variables using the block_list
T
typhoonzero 已提交
235
        block_map = dict()
T
typhoonzero 已提交
236
        var_mapping = dict()
T
typhoonzero 已提交
237 238 239 240 241 242 243
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
244 245 246 247
            var_mapping[varname] = []
            if len(splited) == 1:
                var_mapping[varname] = [orig_var]
                continue
T
typhoonzero 已提交
248 249 250 251
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
252

T
typhoonzero 已提交
253
            for i, block in enumerate(splited):
T
typhoonzero 已提交
254
                size = block[1]
T
typhoonzero 已提交
255 256 257 258
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
259
                print("###splited: ", size, rows, splited_shape)
T
typhoonzero 已提交
260 261 262 263
                var = program.global_block().create_var(
                    name="%s.block%d" % (varname, i),
                    psersistable=False,
                    dtype=orig_var.dtype,
264
                    type=orig_var.type,
T
typhoonzero 已提交
265
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
266
                var_mapping[varname].append(var)
T
typhoonzero 已提交
267
                print("###created split var ", var)
T
typhoonzero 已提交
268
        return var_mapping
T
done  
typhoonzero 已提交
269 270 271 272 273 274 275 276 277

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
278
            # HACK: let all param in pserver be persistable so the child
T
typhoonzero 已提交
279 280
            # program in recv can get them
            persistable=True)
T
done  
typhoonzero 已提交
281

T
typhoonzero 已提交
282
    def _append_split_op(self, program, gradblocks):
283
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
284 285
        var_mapping = self._create_vars_from_blocklist(program, gradblocks)
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
286 287
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
288
                continue
T
typhoonzero 已提交
289
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
290
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
291 292 293 294 295 296 297 298
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
299
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
300 301 302 303 304 305 306 307 308 309 310 311
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
312
        return var_mapping
T
done  
typhoonzero 已提交
313

T
typhoonzero 已提交
314
    def get_trainer_program(self):
T
typhoonzero 已提交
315
        # remove optimize ops and add a send op to main_program
T
typhoonzero 已提交
316 317
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program
T
typhoonzero 已提交
318

T
done  
typhoonzero 已提交
319
    def _create_var_for_trainers(self, block, var, trainers):
320
        # For each trainer, create the necessary variables
T
done  
typhoonzero 已提交
321 322 323 324 325 326
        var_list = []
        for i in xrange(trainers):
            var_each = block.create_var(
                name="%s.trainer_%d" % (var.name, i),
                psersistable=var.persistable,
                dtype=var.dtype,
327
                type=var.type,
T
done  
typhoonzero 已提交
328 329 330 331
                shape=var.shape)
            var_list.append(var_each)
        return var_list

T
typhoonzero 已提交
332 333 334 335
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
336
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

359 360
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint):
        program = optimize_block.program
T
typhoonzero 已提交
361
        pserver_block = program.global_block()
T
typhoonzero 已提交
362
        new_inputs = dict()
T
typhoonzero 已提交
363 364
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
365
        for key in opt_op.input_names:
T
typhoonzero 已提交
366 367 368
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
369
                    if same_or_split_var(g.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
370 371 372 373 374 375
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
376
                merged_var = pserver_block.vars[grad_block.name]
T
typhoonzero 已提交
377 378
                # append merging ops if trainers > 1
                if self.trainers > 1:
T
done  
typhoonzero 已提交
379
                    vars2merge = self._create_var_for_trainers(
T
typhoonzero 已提交
380
                        pserver_block, grad_block, self.trainers)
381
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
382 383 384
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
385
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
386 387 388 389
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
T
typhoonzero 已提交
390 391 392 393 394
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
395
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
396 397 398 399
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
400
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
401
                    name=param_block.name,
T
typhoonzero 已提交
402
                    persistable=True,
T
typhoonzero 已提交
403 404 405
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
406 407 408
            elif key == "LearningRate":
                # leraning rate variable has already be created by non-optimize op,
                # don't create it once again.
T
typhoonzero 已提交
409
                new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
410

T
typhoonzero 已提交
411
        for key in opt_op.input_names:
412 413
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
414
                continue
T
typhoonzero 已提交
415
            var = self.program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
416 417 418 419
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
420
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
421 422 423 424 425
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
426

427
        # change output's ParamOut variable
T
typhoonzero 已提交
428 429
        outputs = self._get_output_map_from_op(self.program.global_block().vars,
                                               opt_op)
430
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
431

432
        optimize_block.append_op(
T
typhoonzero 已提交
433 434
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
435
            outputs=outputs,
T
typhoonzero 已提交
436 437
            attrs=opt_op.attrs)

438 439
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
440
        # Append the ops for parameters that do not need to be optimized/updated
T
typhoonzero 已提交
441 442
        inputs = self._get_input_map_from_op(self.program.global_block().vars,
                                             opt_op)
443 444 445 446
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
447
            for var in varlist:
448 449
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
450 451 452 453 454 455 456 457
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

        outputs = self._get_output_map_from_op(self.program.global_block().vars,
                                               opt_op)

458 459 460 461 462 463 464 465 466 467 468
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
                program.global_block().create_var(
                    name=var.name,
                    persistable=var.persistable,
                    dtype=var.dtype,
                    shape=var.shape)

469
        optimize_block.append_op(
T
typhoonzero 已提交
470
            type=opt_op.type,
T
typhoonzero 已提交
471 472
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
473 474
            attrs=opt_op.attrs)

475 476 477 478
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
479 480 481 482 483
        op1_input_names = op1.desc.input_arg_names()
        op1_output_names = op1.desc.output_arg_names()

        op2_input_names = op2.desc.input_arg_names()
        op2_output_names = op2.desc.output_arg_names()
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc... 
T
typhoonzero 已提交
504 505
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
506 507 508 509 510 511 512
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
513
        if op.input("Param") in param_names:
514 515 516
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
517 518
                param = op.input("Param")[0]
                if same_or_split_var(n, param) and n != param:
519 520 521 522
                    return True
            return False
        return False

523
    def get_pserver_program(self, endpoint):
T
typhoonzero 已提交
524
        """
525
        Get pserver side program using the endpoint
T
typhoonzero 已提交
526 527 528 529 530 531 532 533

        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch. For each pserver endpoint, server side
        program must be a sub-set of the original optimization program.
        """
        # step5
        pserver_program = Program()
T
typhoonzero 已提交
534 535
        print("param mapping on pserver: #### ",
              self.param_grad_ep_mapping[endpoint]["params"])
T
typhoonzero 已提交
536
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
537
            self._clone_var(pserver_program.global_block(), v)
T
typhoonzero 已提交
538 539 540 541 542 543 544 545 546 547 548
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            pserver_program.global_block().create_var(
                name=v.name, persistable=True, dtype=v.dtype, shape=v.shape)
            for trainer_id in xrange(self.trainers):
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d" % (v.name, trainer_id),
                    persistable=True,
                    dtype=v.dtype,
                    shape=v.shape)
T
typhoonzero 已提交
549
        # step6
550
        optimize_block = pserver_program.create_block(0)
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
        # step 6.1
        # Create a union-find data struct by optimize ops,
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
        # step 6.2 
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
        # step 6.3
        # Iterate through the ops, and if an op and the optimize ops
        # which located on current pserver are in one set, then 
        # append it into the sub program.
        for _, op in enumerate(self.optimize_ops):
            for _, opt_op in enumerate(opt_op_on_pserver):
                if ufind.is_connected(op, opt_op):
                    if self._is_opt_op(op):
                        self._append_pserver_ops(optimize_block, op, endpoint)
                    else:
                        self._append_pserver_non_opt_ops(optimize_block, op)
                    break
575
        # Append the listen_and_serv op
T
done  
typhoonzero 已提交
576
        pserver_program.global_block().append_op(
577
            type="listen_and_serv",
T
typhoonzero 已提交
578
            inputs={},
T
done  
typhoonzero 已提交
579 580
            outputs={},
            attrs={
581
                "OptimizeBlock": optimize_block,
T
done  
typhoonzero 已提交
582
                "endpoint": endpoint,
T
typhoonzero 已提交
583 584 585 586 587 588 589 590
                "ParamList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["params"]
                ],
                "GradList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["grads"]
                ],
T
typhoonzero 已提交
591
                "Fanin": self.trainers
T
done  
typhoonzero 已提交
592 593 594
            })
        pserver_program.sync_with_cpp()
        return pserver_program
T
typhoonzero 已提交
595

T
typhoonzero 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
    def _get_input_map_from_op(self, varmap, op):
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

T
typhoonzero 已提交
620
    def get_startup_program(self, endpoint, pserver_program):
T
typhoonzero 已提交
621 622 623
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
624
        were split to several blocks.
T
typhoonzero 已提交
625 626 627 628 629 630 631 632
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
633
                if same_or_split_var(pname, varname) and varname != pname:
T
typhoonzero 已提交
634 635 636
                    return pname, splited_param.shape
            return "", []

Y
update  
yi.wu 已提交
637 638
        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
T
typhoonzero 已提交
639
        created_var_map = dict()
Y
update  
yi.wu 已提交
640
        for _, var in pserver_vars.iteritems():
T
typhoonzero 已提交
641 642
            tmpvar = s_prog.global_block().create_var(
                name=var.name,
T
typhoonzero 已提交
643
                persistable=var.persistable,
T
typhoonzero 已提交
644 645 646 647 648 649
                dtype=var.dtype,
                shape=var.shape)
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
T
typhoonzero 已提交
650
            new_inputs = dict()
T
typhoonzero 已提交
651
            new_outputs = dict()
Y
update  
yi.wu 已提交
652 653
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
T
typhoonzero 已提交
654 655
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
T
typhoonzero 已提交
656
                if newname:
Y
update  
yi.wu 已提交
657
                    op_on_pserver = True
T
typhoonzero 已提交
658
                    new_outputs[key] = created_var_map[newname]
T
typhoonzero 已提交
659
                elif op.output(key)[0] in pserver_vars:
T
typhoonzero 已提交
660
                    op_on_pserver = True
T
typhoonzero 已提交
661 662 663 664
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)
Y
update  
yi.wu 已提交
665

T
typhoonzero 已提交
666
            if op_on_pserver:
T
typhoonzero 已提交
667 668 669
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
T
typhoonzero 已提交
670
                    op.attrs["shape"] = new_outputs["Out"].shape
T
typhoonzero 已提交
671 672
                s_prog.global_block().append_op(
                    type=op.type,
T
typhoonzero 已提交
673
                    inputs=new_inputs,
T
typhoonzero 已提交
674 675 676
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog