sparse_utils_kernel.cu 23.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/phi/kernels/sparse/sparse_utils_kernel.h"

17 18 19
#include <thrust/execution_policy.h>
#include <thrust/remove.h>

20
#include "paddle/phi/backends/gpu/gpu_context.h"
21
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
22
#include "paddle/phi/core/enforce.h"
23 24
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
25
#include "paddle/phi/core/visit_type.h"
Z
zhangkaihuo 已提交
26
#include "paddle/phi/kernels/funcs/math_function.h"
27
#include "paddle/phi/kernels/funcs/sparse/common_shape.h"
28

29
namespace phi {
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
namespace sparse {

template <typename T>
inline __device__ bool DevIsZero(const T* data, const int64_t cols) {
  const T zero = static_cast<T>(0);
  // TODO(zhangkaihuo): check the data is zero or not in parallen when cols > 1
  for (int64_t i = 0; i < cols; i++) {
    if (data[i] != zero) {
      return false;
    }
  }
  return true;
}

template <typename T>
__global__ void GetNonZeroNums(const T* dense_data,
                               const int rows,
                               const int cols,
                               int* non_zero_num,
                               int* temp_indexs) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  __shared__ int counter;
  if (threadIdx.x == 0) counter = 0;
  __syncthreads();

  for (int i = tid; i < rows; i += gridDim.x * blockDim.x) {
    int index = -1;
    // TODO(zhangkaihuo): when cols=1, vectorization can be used
    if (!DevIsZero(dense_data + i * cols, cols)) {
      // use reductions?
      atomicAdd(&counter, 1);
      index = i;
    }
    temp_indexs[i] = index;
  }
  __syncthreads();
  if (threadIdx.x == 0) {
    atomicAdd(non_zero_num, counter);
  }
}

template <typename T>
__global__ void GetNonZeroElementsAndIndices(const T* dense_data,
                                             const int64_t sparse_dim,
                                             const int64_t cols,
                                             const int64_t* x_dims,
                                             const int non_zero_num,
                                             const int* indexs,
                                             int64_t* indices,
                                             T* sparse_data) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    int64_t sparse_index = indexs[i];
    int64_t x_index = sparse_index;
    for (int64_t j = sparse_dim - 1; j >= 0; j--) {
      indices[j * non_zero_num + i] = sparse_index % x_dims[j];
      sparse_index /= x_dims[j];
    }

    for (int j = 0; j < cols; j++) {
      sparse_data[i * cols + j] = dense_data[x_index * cols + j];
    }
  }
}

template <typename T, typename Context>
void DenseToSparseCooKernel(const Context& dev_ctx,
                            const DenseTensor& x,
                            const int64_t sparse_dim,
                            SparseCooTensor* out) {
  const T* x_data = x.data<T>();
  const auto& x_dims = x.dims();
102 103 104 105 106 107
  PADDLE_ENFORCE_LE(sparse_dim,
                    x_dims.size(),
                    phi::errors::InvalidArgument(
                        "sparse_dim must be less than the size of x.dims()"));
  PADDLE_ENFORCE_GT(
      sparse_dim, 0, phi::errors::InvalidArgument("sparse_dim must be >0"));
108 109 110
  auto dims_2d = flatten_to_2d(x_dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];
111 112
  DenseTensor nums = phi::Empty<int32_t>(dev_ctx, {1});
  DenseTensor d_x_dims = phi::Empty<int64_t>(dev_ctx, {x_dims.size()});
113 114

  // 1. get numbers of non zero elements, and get the index of non zero elements
115 116 117
  int* nums_ptr = nums.data<int>();
  phi::backends::gpu::GpuMemsetAsync(
      nums_ptr, 0, sizeof(int), dev_ctx.stream());
118
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rows, 1);
119

120 121 122
  DenseTensor temp_indexs = phi::Empty<int32_t>(dev_ctx, {rows});
  int* temp_indexs_ptr = temp_indexs.data<int>();

123 124 125 126
  GetNonZeroNums<<<config.block_per_grid.x,
                   config.thread_per_block.x,
                   0,
                   dev_ctx.stream()>>>(
127
      x_data, rows, cols, nums_ptr, temp_indexs_ptr);
128

129 130 131 132 133 134 135 136 137 138 139
#ifdef PADDLE_WITH_HIP
  thrust::remove(thrust::hip::par.on(dev_ctx.stream()),
#else
  thrust::remove(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                 temp_indexs_ptr,
                 temp_indexs_ptr + rows,
                 -1);

  // 2. copy non_zero_num to host, copy x_dims to device
  int non_zero_num = 0;
140 141 142 143 144 145 146 147 148 149
  phi::backends::gpu::GpuMemcpyAsync(&non_zero_num,
                                     nums_ptr,
                                     sizeof(int),
                                     gpuMemcpyDeviceToHost,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemcpyAsync(d_x_dims.data<int64_t>(),
                                     x_dims.Get(),
                                     x_dims.size() * sizeof(x_dims[0]),
                                     gpuMemcpyHostToDevice,
                                     dev_ctx.stream());
150 151 152

  dev_ctx.Wait();  // wait the copy

153 154
  const auto values_dims =
      phi::funcs::sparse::InferDenseDims(x_dims, sparse_dim, non_zero_num);
Z
zyfncg 已提交
155 156 157 158 159 160
  phi::DenseTensor indices = phi::Empty<int64_t>(
      dev_ctx, {sparse_dim, static_cast<int64_t>(non_zero_num)});
  int64_t* indices_data = indices.data<int64_t>();
  phi::DenseTensor values;
  values.Resize(values_dims);
  T* sparse_data = dev_ctx.template Alloc<T>(&values);
161 162

  // 3. calc indices by indexs and get values by indexs
163 164 165 166 167 168 169 170 171 172 173 174
  config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
  GetNonZeroElementsAndIndices<<<config.block_per_grid.x,
                                 config.thread_per_block.x,
                                 0,
                                 dev_ctx.stream()>>>(x_data,
                                                     sparse_dim,
                                                     cols,
                                                     d_x_dims.data<int64_t>(),
                                                     non_zero_num,
                                                     temp_indexs_ptr,
                                                     indices_data,
                                                     sparse_data);
175 176 177
  out->SetMember(indices, values, x_dims, true);
}

178 179
template <typename IntT>
__global__ void GetBatchSizes(const IntT* crows,
180 181
                              const int rows,
                              const int batchs,
182
                              IntT* batch_sizes) {
183 184 185 186 187 188
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  if (tid < batchs) {
    batch_sizes[tid] = crows[tid * (rows + 1) + rows];
  }
}

189 190 191 192 193
template <typename IntT>
__global__ void ConvertCsrCrowsToCooRows(const IntT* crows_ptr,
                                         const IntT* crows_offsets,
                                         IntT* rows_ptr,
                                         IntT* batch_ptr,
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
                                         const int rows) {
  const int b = blockIdx.y;
  const int64_t offset = crows_offsets ? crows_offsets[b] : 0;
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < rows; i += gridDim.x * blockDim.x) {
    for (int j = crows_ptr[b * (rows + 1) + i];
         j < crows_ptr[b * (rows + 1) + i + 1];
         j++) {
      rows_ptr[offset + j] = i;
      if (batch_ptr) {
        batch_ptr[offset + j] = b;
      }
    }
  }
}

210 211 212 213
template <typename T, typename IntT>
void SparseCsrToCooGPUKernel(const GPUContext& dev_ctx,
                             const SparseCsrTensor& x,
                             SparseCooTensor* out) {
214
  const DDim& x_dims = x.dims();
215 216 217
  const int64_t non_zero_num = x.cols().numel();
  const auto& csr_crows = x.crows();
  const auto& csr_cols = x.cols();
218
  const auto& csr_values = x.values();
219 220
  const IntT* csr_crows_data = csr_crows.data<IntT>();
  const IntT* csr_cols_data = csr_cols.data<IntT>();
221 222 223 224 225 226 227 228 229
  const T* csr_values_data = csr_values.data<T>();

  int64_t sparse_dim = 2;
  if (x_dims.size() == 3) {
    sparse_dim = 3;
  }
  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

230 231 232 233 234 235
  DenseTensor indices = phi::Empty<IntT>(dev_ctx, {sparse_dim, non_zero_num});
  DenseTensor values = phi::EmptyLike<T, GPUContext>(dev_ctx, csr_values);
  DenseTensor offsets = phi::Empty<IntT>(dev_ctx, {batchs});
  IntT* coo_indices = indices.data<IntT>();
  IntT* batch_ptr = x_dims.size() == 2 ? nullptr : coo_indices;
  IntT* coo_rows_data =
236
      x_dims.size() == 2 ? coo_indices : batch_ptr + non_zero_num;
237 238 239
  IntT* coo_cols_data = coo_rows_data + non_zero_num;
  IntT* offsets_ptr = batchs == 1 ? nullptr : offsets.data<IntT>();
  T* coo_values_data = values.data<T>();
240 241

  if (batchs > 1) {
242
    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, batchs, 1);
243
    GetBatchSizes<IntT><<<config.block_per_grid.x, config.thread_per_block.x>>>(
244 245 246 247 248 249 250 251 252 253 254 255
        csr_crows_data, rows, batchs, offsets_ptr);

#ifdef PADDLE_WITH_HIP
    thrust::exclusive_scan(thrust::hip::par.on(dev_ctx.stream()),
#else
    thrust::exclusive_scan(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                           offsets_ptr,
                           offsets_ptr + batchs,
                           offsets_ptr);
  }

256 257
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rows, 1);
  config.block_per_grid.y = batchs;
258 259 260 261 262 263 264 265 266 267 268 269 270 271
  ConvertCsrCrowsToCooRows<IntT>
      <<<config.block_per_grid, config.thread_per_block.x>>>(
          csr_crows_data, offsets_ptr, coo_rows_data, batch_ptr, rows);

  phi::backends::gpu::GpuMemcpyAsync(coo_cols_data,
                                     csr_cols_data,
                                     sizeof(IntT) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemcpyAsync(coo_values_data,
                                     csr_values_data,
                                     sizeof(T) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
272 273 274 275

  out->SetMember(indices, values, x_dims, true);
}

276 277 278 279
template <typename T, typename Context>
void SparseCsrToCooKernel(const Context& dev_ctx,
                          const SparseCsrTensor& x,
                          SparseCooTensor* out) {
Z
zhangkaihuo 已提交
280
  PD_VISIT_BASE_INTEGRAL_TYPES(
281
      x.crows().dtype(), "SparseCsrToCooGPUKernel", ([&] {
282 283 284 285 286 287
        SparseCsrToCooGPUKernel<T, data_t>(dev_ctx, x, out);
      }));
}

template <typename IntT>
__global__ void GetBatchsOffset(const IntT* batchs_ptr,
Z
zhangkaihuo 已提交
288
                                const int batchs,
289
                                const int non_zero_num,
Z
zhangkaihuo 已提交
290
                                int* batchs_offset) {
291 292 293
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    if (i == non_zero_num - 1 || batchs_ptr[i] != batchs_ptr[i + 1]) {
Z
zhangkaihuo 已提交
294 295 296 297 298
      const int start = batchs_ptr[i];
      const int end = i == non_zero_num - 1 ? batchs : batchs_ptr[i + 1];
      for (int j = start; j < end; j++) {
        batchs_offset[j] = i + 1;
      }
299 300 301 302
    }
  }
}

303
template <typename IntT>
304
__global__ void ConvertCooRowsToCsrCrows(
Z
zhangkaihuo 已提交
305
    const int* batchs_offset,  // can be null if batchs = 1
306 307
    const IntT* coo_rows_data,
    IntT* csr_crows_data,
308 309 310 311 312
    const int rows,
    const int64_t non_zero_num) {
  const int b = blockIdx.y;
  int batch_non_zero_num =
      batchs_offset == nullptr ? non_zero_num : batchs_offset[b];
313
  IntT batch_start = 0;
314 315 316 317
  if (b > 0) {
    batch_start = batchs_offset[b - 1];
    batch_non_zero_num -= batch_start;
  }
Z
zhangkaihuo 已提交
318

319
  const IntT* coo_rows_ptr = coo_rows_data + batch_start;
320 321 322
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < batch_non_zero_num; i += gridDim.x * blockDim.x) {
    if (i == 0) {
323
      for (IntT j = 0; j <= coo_rows_ptr[0]; j++) {
324 325 326
        csr_crows_data[b * (rows + 1) + j] = 0;
      }
    } else {
327
      for (IntT j = coo_rows_ptr[i - 1]; j < coo_rows_ptr[i]; j++) {
328 329 330 331
        csr_crows_data[b * (rows + 1) + j + 1] = i;
      }
    }
    if (i == batch_non_zero_num - 1) {
332
      for (IntT i = coo_rows_ptr[batch_non_zero_num - 1] + 1; i < rows + 1;
333 334 335 336 337
           i++) {
        csr_crows_data[b * (rows + 1) + i] = batch_non_zero_num;
      }
    }
  }
Z
zhangkaihuo 已提交
338 339 340 341 342
  if (batch_non_zero_num == 0) {
    for (int i = tid; i < rows + 1; i += gridDim.x * blockDim.x) {
      csr_crows_data[b * (rows + 1) + i] = 0;
    }
  }
343 344
}

345 346 347 348
template <typename T, typename IntT>
void SparseCooToCsrGPUKernel(const GPUContext& dev_ctx,
                             const SparseCooTensor& x,
                             SparseCsrTensor* out) {
349 350 351 352
  const auto& x_dims = x.dims();
  bool valid = x_dims.size() == 2 || x_dims.size() == 3;
  PADDLE_ENFORCE_EQ(valid,
                    true,
353
                    phi::errors::InvalidArgument(
354 355 356 357 358 359 360
                        "SparseCsrTensor only support 2-D or 3-D matrix"));
  const int64_t non_zero_num = x.nnz();
  if (non_zero_num <= 0) return;

  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

361 362
  phi::DenseTensor crows = phi::Empty<IntT>(dev_ctx, {batchs * (rows + 1)});
  phi::DenseTensor cols = phi::Empty<IntT>(dev_ctx, {non_zero_num});
363
  phi::DenseTensor values = phi::EmptyLike<T, GPUContext>(dev_ctx, x.values());
364 365
  IntT* csr_crows_data = crows.data<IntT>();
  IntT* csr_cols_data = cols.data<IntT>();
366
  T* csr_values_data = values.data<T>();
367

368
  const auto& coo_indices = x.indices();
369
  const auto& coo_values = x.values();
370 371
  const IntT* batchs_ptr = coo_indices.data<IntT>();
  const IntT* coo_rows_data =
Z
zhangkaihuo 已提交
372
      x_dims.size() == 2 ? batchs_ptr : batchs_ptr + non_zero_num;
373
  const IntT* coo_cols_data = coo_rows_data + non_zero_num;
374 375
  const T* coo_values_data = coo_values.data<T>();

376
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, batchs, 1);
377
  if (batchs > 1) {
Z
zhangkaihuo 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390
    auto config =
        phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
    phi::DenseTensor batchs_offset = phi::Empty<int>(dev_ctx, {batchs});
    int* batchs_offset_ptr = batchs_offset.data<int>();
    phi::funcs::SetConstant<GPUContext, int> set_zero;
    // set zero if the nnz=0 of batchs[0]
    set_zero(dev_ctx, &batchs_offset, static_cast<IntT>(0));
    GetBatchsOffset<IntT><<<config.block_per_grid.x,
                            config.thread_per_block.x,
                            0,
                            dev_ctx.stream()>>>(
        batchs_ptr, batchs, non_zero_num, batchs_offset_ptr);

391
    config.block_per_grid.y = batchs;
392 393 394 395
    ConvertCooRowsToCsrCrows<IntT><<<config.block_per_grid,
                                     config.thread_per_block.x,
                                     0,
                                     dev_ctx.stream()>>>(
396 397
        batchs_offset_ptr, coo_rows_data, csr_crows_data, rows, non_zero_num);
  } else {
398 399 400 401
    ConvertCooRowsToCsrCrows<IntT><<<config.block_per_grid.x,
                                     config.thread_per_block.x,
                                     0,
                                     dev_ctx.stream()>>>(
402 403 404
        nullptr, coo_rows_data, csr_crows_data, rows, non_zero_num);
  }

405 406 407 408 409 410 411 412 413 414
  phi::backends::gpu::GpuMemcpyAsync(csr_cols_data,
                                     coo_cols_data,
                                     sizeof(IntT) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemcpyAsync(csr_values_data,
                                     coo_values_data,
                                     sizeof(T) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
415
  out->SetMember(crows, cols, values, x_dims);
416 417
}

418 419 420 421
template <typename T, typename Context>
void SparseCooToCsrKernel(const Context& dev_ctx,
                          const SparseCooTensor& x,
                          SparseCsrTensor* out) {
Z
zhangkaihuo 已提交
422
  PD_VISIT_BASE_INTEGRAL_TYPES(
423
      x.indices().dtype(), "SparseCooToCsrGPUKernel", ([&] {
424 425 426 427
        SparseCooToCsrGPUKernel<T, data_t>(dev_ctx, x, out);
      }));
}

Z
zhangkaihuo 已提交
428 429
template <typename ValueT, typename IndicesT>
__global__ void KernelSparseCooToDense(const IndicesT* indices,
430
                                       const int64_t* sparse_offsets,
Z
zhangkaihuo 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
                                       const ValueT* data,
                                       ValueT* dense_data,
                                       const IndicesT non_zero_num,
                                       const int64_t base_offset,
                                       const int64_t sparse_dim) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    int64_t index = 0;
    for (int j = 0; j < sparse_dim; j++) {
      index += indices[j * non_zero_num + i] * sparse_offsets[j];
    }

    for (int j = 0; j < base_offset; j++) {
      dense_data[index * base_offset + j] = data[i * base_offset + j];
    }
  }
}

449 450 451 452
template <typename T, typename IntT>
void SparseCooToDenseGPUKernel(const GPUContext& dev_ctx,
                               const SparseCooTensor& x,
                               DenseTensor* out) {
Z
zhangkaihuo 已提交
453 454
  const auto non_zero_num = x.nnz();
  const auto dense_dims = x.dims();
455
  const auto indices = x.indices();
456
  const auto values = x.values();
Z
zhangkaihuo 已提交
457 458 459 460 461 462 463 464 465
  const auto indices_dims = indices.dims();
  int64_t sparse_dim = indices_dims[0];
  if (indices_dims.size() == 1) {
    sparse_dim = 1;
  }
  const int64_t dense_dim = values.dims().size() - 1;

  const auto place = dev_ctx.GetPlace();
  const T* x_data = values.data<T>();
466 467
  *out = phi::Empty(
      dev_ctx, phi::DenseTensorMeta(x.dtype(), x.dims(), x.values().layout()));
Z
zhangkaihuo 已提交
468
  T* out_data = out->data<T>();
Z
zhangkaihuo 已提交
469 470 471 472 473 474 475 476 477 478 479
  int64_t base_offset = 1;
  for (int64_t i = 0; i < dense_dim; i++) {
    base_offset *= dense_dims[sparse_dim + i];
  }
  std::vector<int64_t> sparse_offsets(sparse_dim);
  int64_t offset = 1;
  for (int i = sparse_dim - 1; i >= 0; i--) {
    sparse_offsets[i] = offset;
    offset *= dense_dims[i];
  }

480 481 482 483 484 485 486 487 488
  DenseTensor d_sparse_offsets = Empty<int64_t>(dev_ctx, {sparse_dim});

  phi::backends::gpu::GpuMemcpyAsync(d_sparse_offsets.data<int64_t>(),
                                     sparse_offsets.data(),
                                     sparse_dim * sizeof(int64_t),
                                     gpuMemcpyHostToDevice,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemsetAsync(
      out_data, 0, sizeof(T) * out->numel(), dev_ctx.stream());
Z
zhangkaihuo 已提交
489

490 491
  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
Z
zhangkaihuo 已提交
492

493
  KernelSparseCooToDense<T, IntT>
494 495 496
      <<<config.block_per_grid.x,
         config.thread_per_block.x,
         0,
497
         dev_ctx.stream()>>>(indices.data<IntT>(),
498 499 500 501 502 503
                             d_sparse_offsets.data<int64_t>(),
                             x_data,
                             out_data,
                             non_zero_num,
                             base_offset,
                             sparse_dim);
Z
zhangkaihuo 已提交
504 505
}

506 507 508 509
template <typename T, typename Context>
void SparseCooToDenseKernel(const Context& dev_ctx,
                            const SparseCooTensor& x,
                            DenseTensor* out) {
Z
zhangkaihuo 已提交
510
  PD_VISIT_BASE_INTEGRAL_TYPES(
511
      x.indices().dtype(), "SparseCooToDenseGPUKernel", ([&] {
512 513 514 515
        SparseCooToDenseGPUKernel<T, data_t>(dev_ctx, x, out);
      }));
}

516
}  // namespace sparse
517
}  // namespace phi
518

519
PD_REGISTER_KERNEL(dense_to_sparse_coo,
520 521
                   GPU,
                   ALL_LAYOUT,
522
                   phi::sparse::DenseToSparseCooKernel,
523 524
                   float,
                   double,
525
                   phi::dtype::float16,
526 527 528 529 530
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
531

532
PD_REGISTER_KERNEL(sparse_csr_to_coo,
533 534
                   GPU,
                   ALL_LAYOUT,
535
                   phi::sparse::SparseCsrToCooKernel,
536 537
                   float,
                   double,
538
                   phi::dtype::float16,
539 540 541 542 543
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
544

545
PD_REGISTER_KERNEL(sparse_coo_to_csr,
546 547
                   GPU,
                   ALL_LAYOUT,
548
                   phi::sparse::SparseCooToCsrKernel,
549 550
                   float,
                   double,
551
                   phi::dtype::float16,
552 553 554 555 556 557
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

558
PD_REGISTER_KERNEL(dense_to_sparse_csr,
559 560
                   GPU,
                   ALL_LAYOUT,
561
                   phi::sparse::DenseToSparseCsrKernel,
562 563
                   float,
                   double,
564
                   phi::dtype::float16,
565 566 567 568 569
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
Z
zhangkaihuo 已提交
570

571
PD_REGISTER_KERNEL(sparse_coo_to_dense,
Z
zhangkaihuo 已提交
572 573
                   GPU,
                   ALL_LAYOUT,
574
                   phi::sparse::SparseCooToDenseKernel,
Z
zhangkaihuo 已提交
575 576
                   float,
                   double,
577
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
578 579 580 581 582 583
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

584
PD_REGISTER_KERNEL(sparse_csr_to_dense,
Z
zhangkaihuo 已提交
585 586
                   GPU,
                   ALL_LAYOUT,
587
                   phi::sparse::SparseCsrToDenseKernel,
Z
zhangkaihuo 已提交
588 589
                   float,
                   double,
590
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
591 592 593 594 595
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625

PD_REGISTER_KERNEL(coo_values,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::CooValuesKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}

PD_REGISTER_KERNEL(csr_values,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::CsrValuesKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
626 627 628 629 630 631 632 633 634 635 636 637

PD_REGISTER_KERNEL(sparse_coo_tensor,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::SparseCooTensorKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int16_t,
                   int,
                   int64_t) {}