sparse_utils_kernel.cu 23.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/phi/kernels/sparse/sparse_utils_kernel.h"

17 18 19
#include <thrust/execution_policy.h>
#include <thrust/remove.h>

20
#include "paddle/phi/backends/gpu/gpu_context.h"
21
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
22
#include "paddle/phi/core/enforce.h"
23 24
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
25
#include "paddle/phi/core/visit_type.h"
Z
zhangkaihuo 已提交
26
#include "paddle/phi/kernels/funcs/math_function.h"
27
#include "paddle/phi/kernels/funcs/sparse/common_shape.h"
28

29
namespace phi {
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
namespace sparse {

template <typename T>
inline __device__ bool DevIsZero(const T* data, const int64_t cols) {
  const T zero = static_cast<T>(0);
  // TODO(zhangkaihuo): check the data is zero or not in parallen when cols > 1
  for (int64_t i = 0; i < cols; i++) {
    if (data[i] != zero) {
      return false;
    }
  }
  return true;
}

template <typename T>
__global__ void GetNonZeroNums(const T* dense_data,
                               const int rows,
                               const int cols,
                               int* non_zero_num,
                               int* temp_indexs) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  __shared__ int counter;
  if (threadIdx.x == 0) counter = 0;
  __syncthreads();

  for (int i = tid; i < rows; i += gridDim.x * blockDim.x) {
    int index = -1;
    // TODO(zhangkaihuo): when cols=1, vectorization can be used
    if (!DevIsZero(dense_data + i * cols, cols)) {
      // use reductions?
      atomicAdd(&counter, 1);
      index = i;
    }
    temp_indexs[i] = index;
  }
  __syncthreads();
  if (threadIdx.x == 0) {
    atomicAdd(non_zero_num, counter);
  }
}

template <typename T>
__global__ void GetNonZeroElementsAndIndices(const T* dense_data,
                                             const int64_t sparse_dim,
                                             const int64_t cols,
                                             const int64_t* x_dims,
                                             const int non_zero_num,
                                             const int* indexs,
                                             int64_t* indices,
                                             T* sparse_data) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    int64_t sparse_index = indexs[i];
    int64_t x_index = sparse_index;
    for (int64_t j = sparse_dim - 1; j >= 0; j--) {
      indices[j * non_zero_num + i] = sparse_index % x_dims[j];
      sparse_index /= x_dims[j];
    }

    for (int j = 0; j < cols; j++) {
      sparse_data[i * cols + j] = dense_data[x_index * cols + j];
    }
  }
}

template <typename T, typename Context>
void DenseToSparseCooKernel(const Context& dev_ctx,
                            const DenseTensor& x,
                            const int64_t sparse_dim,
                            SparseCooTensor* out) {
  const T* x_data = x.data<T>();
  const auto& x_dims = x.dims();
102 103 104 105 106 107
  PADDLE_ENFORCE_LE(sparse_dim,
                    x_dims.size(),
                    phi::errors::InvalidArgument(
                        "sparse_dim must be less than the size of x.dims()"));
  PADDLE_ENFORCE_GT(
      sparse_dim, 0, phi::errors::InvalidArgument("sparse_dim must be >0"));
108 109 110
  auto dims_2d = flatten_to_2d(x_dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];
111 112
  DenseTensor nums = phi::Empty<int32_t>(dev_ctx, {1});
  DenseTensor d_x_dims = phi::Empty<int64_t>(dev_ctx, {x_dims.size()});
113 114

  // 1. get numbers of non zero elements, and get the index of non zero elements
115 116 117
  int* nums_ptr = nums.data<int>();
  phi::backends::gpu::GpuMemsetAsync(
      nums_ptr, 0, sizeof(int), dev_ctx.stream());
118
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rows, 1);
119

120 121 122
  DenseTensor temp_indexs = phi::Empty<int32_t>(dev_ctx, {rows});
  int* temp_indexs_ptr = temp_indexs.data<int>();

123 124 125 126
  GetNonZeroNums<<<config.block_per_grid.x,
                   config.thread_per_block.x,
                   0,
                   dev_ctx.stream()>>>(
127
      x_data, rows, cols, nums_ptr, temp_indexs_ptr);
128

129 130 131 132 133 134 135 136 137 138 139
#ifdef PADDLE_WITH_HIP
  thrust::remove(thrust::hip::par.on(dev_ctx.stream()),
#else
  thrust::remove(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                 temp_indexs_ptr,
                 temp_indexs_ptr + rows,
                 -1);

  // 2. copy non_zero_num to host, copy x_dims to device
  int non_zero_num = 0;
140 141 142 143 144 145 146 147 148 149
  phi::backends::gpu::GpuMemcpyAsync(&non_zero_num,
                                     nums_ptr,
                                     sizeof(int),
                                     gpuMemcpyDeviceToHost,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemcpyAsync(d_x_dims.data<int64_t>(),
                                     x_dims.Get(),
                                     x_dims.size() * sizeof(x_dims[0]),
                                     gpuMemcpyHostToDevice,
                                     dev_ctx.stream());
150 151 152

  dev_ctx.Wait();  // wait the copy

153 154
  const auto values_dims =
      phi::funcs::sparse::InferDenseDims(x_dims, sparse_dim, non_zero_num);
Z
zyfncg 已提交
155 156 157 158 159 160
  phi::DenseTensor indices = phi::Empty<int64_t>(
      dev_ctx, {sparse_dim, static_cast<int64_t>(non_zero_num)});
  int64_t* indices_data = indices.data<int64_t>();
  phi::DenseTensor values;
  values.Resize(values_dims);
  T* sparse_data = dev_ctx.template Alloc<T>(&values);
161 162

  // 3. calc indices by indexs and get values by indexs
163 164 165 166 167 168 169 170 171 172 173 174
  config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
  GetNonZeroElementsAndIndices<<<config.block_per_grid.x,
                                 config.thread_per_block.x,
                                 0,
                                 dev_ctx.stream()>>>(x_data,
                                                     sparse_dim,
                                                     cols,
                                                     d_x_dims.data<int64_t>(),
                                                     non_zero_num,
                                                     temp_indexs_ptr,
                                                     indices_data,
                                                     sparse_data);
175 176 177
  out->SetMember(indices, values, x_dims, true);
}

178 179
template <typename IntT>
__global__ void GetBatchSizes(const IntT* crows,
180 181
                              const int rows,
                              const int batchs,
182
                              IntT* batch_sizes) {
183 184 185 186 187 188
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  if (tid < batchs) {
    batch_sizes[tid] = crows[tid * (rows + 1) + rows];
  }
}

189 190 191 192 193
template <typename IntT>
__global__ void ConvertCsrCrowsToCooRows(const IntT* crows_ptr,
                                         const IntT* crows_offsets,
                                         IntT* rows_ptr,
                                         IntT* batch_ptr,
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
                                         const int rows) {
  const int b = blockIdx.y;
  const int64_t offset = crows_offsets ? crows_offsets[b] : 0;
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < rows; i += gridDim.x * blockDim.x) {
    for (int j = crows_ptr[b * (rows + 1) + i];
         j < crows_ptr[b * (rows + 1) + i + 1];
         j++) {
      rows_ptr[offset + j] = i;
      if (batch_ptr) {
        batch_ptr[offset + j] = b;
      }
    }
  }
}

210 211 212 213
template <typename T, typename IntT>
void SparseCsrToCooGPUKernel(const GPUContext& dev_ctx,
                             const SparseCsrTensor& x,
                             SparseCooTensor* out) {
214 215 216 217 218
  const DDim& x_dims = x.dims();
  const int64_t non_zero_num = x.non_zero_cols().numel();
  const auto& csr_crows = x.non_zero_crows();
  const auto& csr_cols = x.non_zero_cols();
  const auto& csr_values = x.non_zero_elements();
219 220
  const IntT* csr_crows_data = csr_crows.data<IntT>();
  const IntT* csr_cols_data = csr_cols.data<IntT>();
221 222 223 224 225 226 227 228 229
  const T* csr_values_data = csr_values.data<T>();

  int64_t sparse_dim = 2;
  if (x_dims.size() == 3) {
    sparse_dim = 3;
  }
  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

230 231 232 233 234 235
  DenseTensor indices = phi::Empty<IntT>(dev_ctx, {sparse_dim, non_zero_num});
  DenseTensor values = phi::EmptyLike<T, GPUContext>(dev_ctx, csr_values);
  DenseTensor offsets = phi::Empty<IntT>(dev_ctx, {batchs});
  IntT* coo_indices = indices.data<IntT>();
  IntT* batch_ptr = x_dims.size() == 2 ? nullptr : coo_indices;
  IntT* coo_rows_data =
236
      x_dims.size() == 2 ? coo_indices : batch_ptr + non_zero_num;
237 238 239
  IntT* coo_cols_data = coo_rows_data + non_zero_num;
  IntT* offsets_ptr = batchs == 1 ? nullptr : offsets.data<IntT>();
  T* coo_values_data = values.data<T>();
240 241

  if (batchs > 1) {
242
    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, batchs, 1);
243
    GetBatchSizes<IntT><<<config.block_per_grid.x, config.thread_per_block.x>>>(
244 245 246 247 248 249 250 251 252 253 254 255
        csr_crows_data, rows, batchs, offsets_ptr);

#ifdef PADDLE_WITH_HIP
    thrust::exclusive_scan(thrust::hip::par.on(dev_ctx.stream()),
#else
    thrust::exclusive_scan(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                           offsets_ptr,
                           offsets_ptr + batchs,
                           offsets_ptr);
  }

256 257
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rows, 1);
  config.block_per_grid.y = batchs;
258 259 260 261 262 263 264 265 266 267 268 269 270 271
  ConvertCsrCrowsToCooRows<IntT>
      <<<config.block_per_grid, config.thread_per_block.x>>>(
          csr_crows_data, offsets_ptr, coo_rows_data, batch_ptr, rows);

  phi::backends::gpu::GpuMemcpyAsync(coo_cols_data,
                                     csr_cols_data,
                                     sizeof(IntT) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemcpyAsync(coo_values_data,
                                     csr_values_data,
                                     sizeof(T) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
272 273 274 275

  out->SetMember(indices, values, x_dims, true);
}

276 277 278 279
template <typename T, typename Context>
void SparseCsrToCooKernel(const Context& dev_ctx,
                          const SparseCsrTensor& x,
                          SparseCooTensor* out) {
Z
zhangkaihuo 已提交
280
  PD_VISIT_BASE_INTEGRAL_TYPES(
281 282 283 284 285 286 287
      x.non_zero_crows().dtype(), "SparseCsrToCooGPUKernel", ([&] {
        SparseCsrToCooGPUKernel<T, data_t>(dev_ctx, x, out);
      }));
}

template <typename IntT>
__global__ void GetBatchsOffset(const IntT* batchs_ptr,
Z
zhangkaihuo 已提交
288
                                const int batchs,
289
                                const int non_zero_num,
Z
zhangkaihuo 已提交
290
                                int* batchs_offset) {
291 292 293
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    if (i == non_zero_num - 1 || batchs_ptr[i] != batchs_ptr[i + 1]) {
Z
zhangkaihuo 已提交
294 295 296 297 298
      const int start = batchs_ptr[i];
      const int end = i == non_zero_num - 1 ? batchs : batchs_ptr[i + 1];
      for (int j = start; j < end; j++) {
        batchs_offset[j] = i + 1;
      }
299 300 301 302
    }
  }
}

303
template <typename IntT>
304
__global__ void ConvertCooRowsToCsrCrows(
Z
zhangkaihuo 已提交
305
    const int* batchs_offset,  // can be null if batchs = 1
306 307
    const IntT* coo_rows_data,
    IntT* csr_crows_data,
308 309 310 311 312
    const int rows,
    const int64_t non_zero_num) {
  const int b = blockIdx.y;
  int batch_non_zero_num =
      batchs_offset == nullptr ? non_zero_num : batchs_offset[b];
313
  IntT batch_start = 0;
314 315 316 317
  if (b > 0) {
    batch_start = batchs_offset[b - 1];
    batch_non_zero_num -= batch_start;
  }
Z
zhangkaihuo 已提交
318

319
  const IntT* coo_rows_ptr = coo_rows_data + batch_start;
320 321 322
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < batch_non_zero_num; i += gridDim.x * blockDim.x) {
    if (i == 0) {
323
      for (IntT j = 0; j <= coo_rows_ptr[0]; j++) {
324 325 326
        csr_crows_data[b * (rows + 1) + j] = 0;
      }
    } else {
327
      for (IntT j = coo_rows_ptr[i - 1]; j < coo_rows_ptr[i]; j++) {
328 329 330 331
        csr_crows_data[b * (rows + 1) + j + 1] = i;
      }
    }
    if (i == batch_non_zero_num - 1) {
332
      for (IntT i = coo_rows_ptr[batch_non_zero_num - 1] + 1; i < rows + 1;
333 334 335 336 337
           i++) {
        csr_crows_data[b * (rows + 1) + i] = batch_non_zero_num;
      }
    }
  }
Z
zhangkaihuo 已提交
338 339 340 341 342
  if (batch_non_zero_num == 0) {
    for (int i = tid; i < rows + 1; i += gridDim.x * blockDim.x) {
      csr_crows_data[b * (rows + 1) + i] = 0;
    }
  }
343 344
}

345 346 347 348
template <typename T, typename IntT>
void SparseCooToCsrGPUKernel(const GPUContext& dev_ctx,
                             const SparseCooTensor& x,
                             SparseCsrTensor* out) {
349 350 351 352
  const auto& x_dims = x.dims();
  bool valid = x_dims.size() == 2 || x_dims.size() == 3;
  PADDLE_ENFORCE_EQ(valid,
                    true,
353
                    phi::errors::InvalidArgument(
354 355 356 357 358 359 360
                        "SparseCsrTensor only support 2-D or 3-D matrix"));
  const int64_t non_zero_num = x.nnz();
  if (non_zero_num <= 0) return;

  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

Z
zyfncg 已提交
361
  phi::DenseTensor non_zero_crows =
362 363 364 365 366 367
      phi::Empty<IntT>(dev_ctx, {batchs * (rows + 1)});
  phi::DenseTensor non_zero_cols = phi::Empty<IntT>(dev_ctx, {non_zero_num});
  phi::DenseTensor non_zero_elements =
      phi::EmptyLike<T, GPUContext>(dev_ctx, x.non_zero_elements());
  IntT* csr_crows_data = non_zero_crows.data<IntT>();
  IntT* csr_cols_data = non_zero_cols.data<IntT>();
Z
zyfncg 已提交
368
  T* csr_values_data = non_zero_elements.data<T>();
369 370 371

  const auto& coo_indices = x.non_zero_indices();
  const auto& coo_values = x.non_zero_elements();
372 373
  const IntT* batchs_ptr = coo_indices.data<IntT>();
  const IntT* coo_rows_data =
Z
zhangkaihuo 已提交
374
      x_dims.size() == 2 ? batchs_ptr : batchs_ptr + non_zero_num;
375
  const IntT* coo_cols_data = coo_rows_data + non_zero_num;
376 377
  const T* coo_values_data = coo_values.data<T>();

378
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, batchs, 1);
379
  if (batchs > 1) {
Z
zhangkaihuo 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392
    auto config =
        phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
    phi::DenseTensor batchs_offset = phi::Empty<int>(dev_ctx, {batchs});
    int* batchs_offset_ptr = batchs_offset.data<int>();
    phi::funcs::SetConstant<GPUContext, int> set_zero;
    // set zero if the nnz=0 of batchs[0]
    set_zero(dev_ctx, &batchs_offset, static_cast<IntT>(0));
    GetBatchsOffset<IntT><<<config.block_per_grid.x,
                            config.thread_per_block.x,
                            0,
                            dev_ctx.stream()>>>(
        batchs_ptr, batchs, non_zero_num, batchs_offset_ptr);

393
    config.block_per_grid.y = batchs;
394 395 396 397
    ConvertCooRowsToCsrCrows<IntT><<<config.block_per_grid,
                                     config.thread_per_block.x,
                                     0,
                                     dev_ctx.stream()>>>(
398 399
        batchs_offset_ptr, coo_rows_data, csr_crows_data, rows, non_zero_num);
  } else {
400 401 402 403
    ConvertCooRowsToCsrCrows<IntT><<<config.block_per_grid.x,
                                     config.thread_per_block.x,
                                     0,
                                     dev_ctx.stream()>>>(
404 405 406
        nullptr, coo_rows_data, csr_crows_data, rows, non_zero_num);
  }

407 408 409 410 411 412 413 414 415 416
  phi::backends::gpu::GpuMemcpyAsync(csr_cols_data,
                                     coo_cols_data,
                                     sizeof(IntT) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemcpyAsync(csr_values_data,
                                     coo_values_data,
                                     sizeof(T) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
417 418 419
  out->SetMember(non_zero_crows, non_zero_cols, non_zero_elements, x_dims);
}

420 421 422 423
template <typename T, typename Context>
void SparseCooToCsrKernel(const Context& dev_ctx,
                          const SparseCooTensor& x,
                          SparseCsrTensor* out) {
Z
zhangkaihuo 已提交
424
  PD_VISIT_BASE_INTEGRAL_TYPES(
425 426 427 428 429
      x.non_zero_indices().dtype(), "SparseCooToCsrGPUKernel", ([&] {
        SparseCooToCsrGPUKernel<T, data_t>(dev_ctx, x, out);
      }));
}

Z
zhangkaihuo 已提交
430 431
template <typename ValueT, typename IndicesT>
__global__ void KernelSparseCooToDense(const IndicesT* indices,
432
                                       const int64_t* sparse_offsets,
Z
zhangkaihuo 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
                                       const ValueT* data,
                                       ValueT* dense_data,
                                       const IndicesT non_zero_num,
                                       const int64_t base_offset,
                                       const int64_t sparse_dim) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    int64_t index = 0;
    for (int j = 0; j < sparse_dim; j++) {
      index += indices[j * non_zero_num + i] * sparse_offsets[j];
    }

    for (int j = 0; j < base_offset; j++) {
      dense_data[index * base_offset + j] = data[i * base_offset + j];
    }
  }
}

451 452 453 454
template <typename T, typename IntT>
void SparseCooToDenseGPUKernel(const GPUContext& dev_ctx,
                               const SparseCooTensor& x,
                               DenseTensor* out) {
Z
zhangkaihuo 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467
  const auto non_zero_num = x.nnz();
  const auto dense_dims = x.dims();
  const auto indices = x.non_zero_indices();
  const auto values = x.non_zero_elements();
  const auto indices_dims = indices.dims();
  int64_t sparse_dim = indices_dims[0];
  if (indices_dims.size() == 1) {
    sparse_dim = 1;
  }
  const int64_t dense_dim = values.dims().size() - 1;

  const auto place = dev_ctx.GetPlace();
  const T* x_data = values.data<T>();
Z
zhangkaihuo 已提交
468 469 470 471
  *out = phi::Empty(dev_ctx,
                    phi::DenseTensorMeta(
                        x.dtype(), x.dims(), x.non_zero_elements().layout()));
  T* out_data = out->data<T>();
Z
zhangkaihuo 已提交
472 473 474 475 476 477 478 479 480 481 482
  int64_t base_offset = 1;
  for (int64_t i = 0; i < dense_dim; i++) {
    base_offset *= dense_dims[sparse_dim + i];
  }
  std::vector<int64_t> sparse_offsets(sparse_dim);
  int64_t offset = 1;
  for (int i = sparse_dim - 1; i >= 0; i--) {
    sparse_offsets[i] = offset;
    offset *= dense_dims[i];
  }

483 484 485 486 487 488 489 490 491
  DenseTensor d_sparse_offsets = Empty<int64_t>(dev_ctx, {sparse_dim});

  phi::backends::gpu::GpuMemcpyAsync(d_sparse_offsets.data<int64_t>(),
                                     sparse_offsets.data(),
                                     sparse_dim * sizeof(int64_t),
                                     gpuMemcpyHostToDevice,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemsetAsync(
      out_data, 0, sizeof(T) * out->numel(), dev_ctx.stream());
Z
zhangkaihuo 已提交
492

493 494
  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
Z
zhangkaihuo 已提交
495

496
  KernelSparseCooToDense<T, IntT>
497 498 499
      <<<config.block_per_grid.x,
         config.thread_per_block.x,
         0,
500
         dev_ctx.stream()>>>(indices.data<IntT>(),
501 502 503 504 505 506
                             d_sparse_offsets.data<int64_t>(),
                             x_data,
                             out_data,
                             non_zero_num,
                             base_offset,
                             sparse_dim);
Z
zhangkaihuo 已提交
507 508
}

509 510 511 512
template <typename T, typename Context>
void SparseCooToDenseKernel(const Context& dev_ctx,
                            const SparseCooTensor& x,
                            DenseTensor* out) {
Z
zhangkaihuo 已提交
513
  PD_VISIT_BASE_INTEGRAL_TYPES(
514 515 516 517 518
      x.non_zero_indices().dtype(), "SparseCooToDenseGPUKernel", ([&] {
        SparseCooToDenseGPUKernel<T, data_t>(dev_ctx, x, out);
      }));
}

519
}  // namespace sparse
520
}  // namespace phi
521

522
PD_REGISTER_KERNEL(dense_to_sparse_coo,
523 524
                   GPU,
                   ALL_LAYOUT,
525
                   phi::sparse::DenseToSparseCooKernel,
526 527
                   float,
                   double,
528
                   phi::dtype::float16,
529 530 531 532 533
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
534

535
PD_REGISTER_KERNEL(sparse_csr_to_coo,
536 537
                   GPU,
                   ALL_LAYOUT,
538
                   phi::sparse::SparseCsrToCooKernel,
539 540
                   float,
                   double,
541
                   phi::dtype::float16,
542 543 544 545 546
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
547

548
PD_REGISTER_KERNEL(sparse_coo_to_csr,
549 550
                   GPU,
                   ALL_LAYOUT,
551
                   phi::sparse::SparseCooToCsrKernel,
552 553
                   float,
                   double,
554
                   phi::dtype::float16,
555 556 557 558 559 560
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

561
PD_REGISTER_KERNEL(dense_to_sparse_csr,
562 563
                   GPU,
                   ALL_LAYOUT,
564
                   phi::sparse::DenseToSparseCsrKernel,
565 566
                   float,
                   double,
567
                   phi::dtype::float16,
568 569 570 571 572
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
Z
zhangkaihuo 已提交
573

574
PD_REGISTER_KERNEL(sparse_coo_to_dense,
Z
zhangkaihuo 已提交
575 576
                   GPU,
                   ALL_LAYOUT,
577
                   phi::sparse::SparseCooToDenseKernel,
Z
zhangkaihuo 已提交
578 579
                   float,
                   double,
580
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
581 582 583 584 585 586
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

587
PD_REGISTER_KERNEL(sparse_csr_to_dense,
Z
zhangkaihuo 已提交
588 589
                   GPU,
                   ALL_LAYOUT,
590
                   phi::sparse::SparseCsrToDenseKernel,
Z
zhangkaihuo 已提交
591 592
                   float,
                   double,
593
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
594 595 596 597 598
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628

PD_REGISTER_KERNEL(coo_values,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::CooValuesKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}

PD_REGISTER_KERNEL(csr_values,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::CsrValuesKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
629 630 631 632 633 634 635 636 637 638 639 640

PD_REGISTER_KERNEL(sparse_coo_tensor,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::SparseCooTensorKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int16_t,
                   int,
                   int64_t) {}