strings_api_gen.py 13.9 KB
Newer Older
J
Jack Zhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import argparse
import re

from api_gen import ForwardAPI
PREFIX_TENSOR_NAME = 'input_'
PREFIX_META_TENSOR_NAME = 'meta_'


class StringsAPI(ForwardAPI):
    def __init__(self, api_item_yaml):
        super(StringsAPI, self).__init__(api_item_yaml)

    def get_api_func_name(self):
        return self.api

    def gene_api_declaration(self):
        return f"""
// {", ".join(self.outputs['names'])}
PADDLE_API {self.outputs['return_type']} {self.get_api_func_name()}({self.args_str['args_declare']});
"""

    def get_kernel_tensor_out_type(self, output_name):
        strings_type = 'TensorType::DENSE_TENSOR'
        if output_name.endswith('@StringTensor'):
            strings_type = 'TensorType::STRING_TENSOR'
        return strings_type

    def get_tensor_type(self, kernel_tensor_out_type):
        tensor_type_dict = {
            "TensorType::DENSE_TENSOR": "phi::DenseTensor",
            "TensorType::STRING_TENSOR": "phi::StringTensor",
        }
        return tensor_type_dict[kernel_tensor_out_type]

    def gene_output(self,
                    output_type_list,
                    set_out_func,
                    code_indent,
                    inplace_flag=False):
        kernel_output = ""
        output_names = []
        output_create = ""

        if len(output_type_list) == 1:
            kernel_output = 'kernel_out'
            output_names.append('kernel_out')
            kernel_tensor_out_type = self.get_kernel_tensor_out_type(
                self.outputs['names'][0])
            tensor_type = self.get_tensor_type(kernel_tensor_out_type)
            inplace_assign = " = " + self.inplace_map[self.outputs['names'][
                0]] if inplace_flag and self.inplace_map is not None and self.outputs[
                    'names'][0] in self.inplace_map else ""
            output_create = f"""
  {self.outputs['return_type']} api_output{inplace_assign};
  
  {tensor_type}* kernel_out = dynamic_cast<{tensor_type}*>({set_out_func}(kernel_backend, &api_output, {kernel_tensor_out_type}));"""

        elif len(output_type_list) > 1:
            output_create = f"""
  {self.outputs['return_type']} api_output;"""

            for i in range(len(output_type_list)):
                kernel_output = kernel_output + f'kernel_out_{i}, '
                output_names.append(f'kernel_out_{i}')
                kernel_tensor_out_type = self.get_kernel_tensor_out_type(
                    self.outputs['names'][i])
                tensor_type = self.get_tensor_type(kernel_tensor_out_type)
                if inplace_flag and self.inplace_map is not None and self.outputs[
                        'names'][i] in self.inplace_map:
                    output_create = output_create + f"""
  std::get<{i}>(api_output) = {self.inplace_map[self.outputs['names'][i]]};"""

                output_create = output_create + f"""
  {tensor_type}* kernel_out_{i} = dynamic_cast<{tensor_type}*>({set_out_func}(&std::get<{i}>(api_output), {kernel_tensor_out_type}));"""

            kernel_output = kernel_output[:-2]
        else:
            raise ValueError(
                "{} : Output error: the output should not be empty.".format(
                    self.api))

        return kernel_output, output_names, output_create

    def get_kernel_args(self, code_indent):
        input_trans_map = {
            'const Tensor&': 'const phi::StringTensor&',
            'const std::vector<Tensor>&':
            'const std::vector<const phi::StringTensor*>&',
            'const paddle::optional<Tensor>&':
            'paddle::optional<const phi::StringTensor&>',
            'const paddle::optional<std::vector<Tensor>>&':
            'paddle::optional<const std::vector<phi::StringTensor>&>'
        }
        out_trans_map = {
            'Tensor': 'phi::StringTensor*',
            'std::vector<Tensor>': 'std::vector<phi::StringTensor*>&'
        }
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names
        input_tensor_code = ""
        # set input_tensor_code
        for i, input_name in enumerate(input_names):
            input_tensor_code = input_tensor_code + f"""
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = TensorToStringTensor({input_name});"""

        # set kernel_args
        kernel_args = "*dev_ctx, "
        for param in kernel_param:
            if param in input_names:
                if param in self.optional_vars:
                    kernel_args = kernel_args + PREFIX_TENSOR_NAME + param + ", "
                else:
                    if self.inputs['input_info'][param] == "const Tensor&":
                        kernel_args = kernel_args + "*" + PREFIX_TENSOR_NAME + param + ", "
                    elif self.inputs['input_info'][
                            input_name] == "const std::vector<Tensor>&":
                        kernel_args = kernel_args + PREFIX_TENSOR_NAME + param + ", "
                    else:
                        # do nothing
                        pass
                kernel_in_type = input_trans_map[input_infos[param]]
                kernel_args_type_list.append(kernel_in_type)
            elif param in attr_names:
                # set attr for kernel_context
147 148 149
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const phi::IntArray&')
                    param = 'phi::IntArray(' + param + ')'
J
Jack Zhou 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const phi::Scalar&')
                    param = 'phi::Scalar(' + param + ')'
                else:
                    kernel_args_type_list.append(self.attrs['attr_info'][param][
                        0])
                kernel_args = kernel_args + param + ", "
            elif isinstance(param, bool):
                kernel_args = kernel_args + str(param).lower() + ", "
            else:
                kernel_args = kernel_args + str(param) + ", "

        for out_type in self.outputs['types']:
            kernel_args_type_list.append(out_trans_map[out_type])

        # set kernel_signature
        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

        return input_tensor_code, kernel_args[:-2], kernel_signature

    def gen_string_tensor_kernel_code(self, inplace_flag=False, code_indent=""):
        input_tensors, kernel_args, kernel_signature = self.get_kernel_args(
            code_indent)
        outputs_args, kernel_output_names, output_create = self.gene_output(
            self.outputs['types'], 'SetStringsKernelOutput', '', inplace_flag)

        return f"""
  // 1. Get kernel signature and kernel
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "{self.kernel['func'][0]}", {{kernel_backend, kernel_layout, kernel_data_type}});
  VLOG(6) << "{self.api} api strings kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
  VLOG(6) << "{self.api} api strings kernel: " << kernel;

  // 2. Get Device Context and input
  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
  {input_tensors}

  //  3. Set output
  {output_create}
{self.gene_infer_meta(kernel_output_names, code_indent)}

  // 4. run kernel

{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
{code_indent}  (*kernel_fn)({kernel_args}, {outputs_args});

{code_indent}  return {self.gene_return_code()};"""

    def gene_kernel_select(self) -> str:
        api = self.api
        input_names = self.inputs['names']
        attrs = self.attrs
        kernel = self.kernel

        kernel_key_item_init = """
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::PSTRING_UNION;
  DataType kernel_data_type = DataType::PSTRING;
"""
        # Check the tensor options
        attr_backend_count = 0
        attr_layout_count = 0
        attr_data_type_count = 0
        for attr_name in attrs['names']:
            if attrs['attr_info'][attr_name][0] == 'Backend':
                assert kernel['backend'] is not None, \
                    f"{api} api: When there is a parameter with 'Backend' type in attributes, you must set backend of kernel manually."
                attr_backend_count = attr_backend_count + 1

        # preprocess kernel configures
        kernel_select_code = ""
        if kernel['backend'] is not None:
            if '>' in kernel['backend']:
                vars_list = kernel['backend'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}."
228
                assert (vars_list[0].strip() in attrs['names']) and (attrs['attr_info'][vars_list[0].strip()][0] == 'const Place&'), \
J
Jack Zhou 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
                    f"{api} api: When use '>' to set kernel backend, the first param should be a attribute with Place type."
                kernel_select_code = kernel_select_code + f"""
  kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                args_str = ""
                for ele in kernel['backend'].split(','):
                    args_str = args_str + ele.strip() + ', '
                kernel_select_code = kernel_select_code + f"""
  kernel_backend = ParseBackend({args_str[:-2]});
"""

        kernel_select_args = ""
        for input_name in input_names:
            kernel_select_args = kernel_select_args + input_name + ", "

        if len(kernel_select_args) > 2:
            kernel_select_args = kernel_select_args[:-2]

        kernel_select_code = kernel_key_item_init + kernel_select_code

        if len(input_names) > 0:
            if self.support_selected_rows_kernel:
                kernel_select_code = kernel_select_code + f"""
  KernelType kernel_type = ParseKernelTypeByInputArgs({", ".join(input_names)});
"""

            kernel_select_code = kernel_select_code + f"""
  auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args});
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
  kernel_backend = kernel_key.backend();"""

        return kernel_select_code

    def gene_base_api_code(self, inplace_flag=False):
        api_func_name = self.get_api_func_name()
        return f"""
PADDLE_API {self.outputs['return_type']} {api_func_name}({self.args_str["args_define"]}) {{
{self.gene_kernel_select()}
{self.gen_string_tensor_kernel_code(inplace_flag)}
}}
"""


def header_include():
    return """
#include <tuple>

#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/common/scalar.h"
280
#include "paddle/phi/common/int_array.h"
J
Jack Zhou 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
#include "paddle/utils/optional.h"
"""


def source_include(header_file_path):
    return f"""
#include "{header_file_path}"

#include "paddle/phi/api/lib/api_gen_utils.h"
#include "paddle/phi/core/kernel_context.h"
#include "paddle/phi/core/string_tensor.h"
#include "paddle/phi/infermeta/strings/nullary.h"
#include "paddle/phi/infermeta/strings/unary.h"
#include "paddle/phi/api/lib/api_registry.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/core/kernel_registry.h"
"""


def api_register():
    return """
PD_REGISTER_API(StringsApi);
"""


def api_namespace():
    return ("""
namespace paddle {
namespace experimental {
namespace strings {

""", """

}  // namespace strings
}  // namespace experimental
}  // namespace paddle
""")


def generate_api(api_yaml_path, header_file_path, source_file_path):

    with open(api_yaml_path, 'r') as f:
        apis = yaml.load(f, Loader=yaml.FullLoader)
    header_file = open(header_file_path, 'w')
    source_file = open(source_file_path, 'w')

    namespace = api_namespace()

    header_file.write("#pragma once\n")
    header_file.write(header_include())
    header_file.write(namespace[0])

    include_header_file = "paddle/phi/api/include/strings_api.h"
    source_file.write(source_include(include_header_file))
    source_file.write(namespace[0])

    for api in apis:
        strings_api = StringsAPI(api)
        header_file.write(strings_api.gene_api_declaration())
        source_file.write(strings_api.gene_api_code())

    header_file.write(namespace[1])
    source_file.write(namespace[1])

    # source_file.write(api_register())

    header_file.close()
    source_file.close()


def main():
    parser = argparse.ArgumentParser(
        description='Generate PaddlePaddle C++ Strings API files')
    parser.add_argument(
        '--api_yaml_path',
        help='path to sparse api yaml file',
        default='python/paddle/utils/code_gen/strings_api.yaml')

    parser.add_argument(
        '--api_header_path',
        help='output of generated api header code file',
        default='paddle/phi/api/include/strings_api.h')

    parser.add_argument(
        '--api_source_path',
        help='output of generated api source code file',
        default='paddle/phi/api/lib/strings_api.cc')

    options = parser.parse_args()

    api_yaml_path = options.api_yaml_path
    header_file_path = options.api_header_path
    source_file_path = options.api_source_path

    generate_api(api_yaml_path, header_file_path, source_file_path)


if __name__ == '__main__':
    main()