# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import yaml import argparse import re from api_gen import ForwardAPI PREFIX_TENSOR_NAME = 'input_' PREFIX_META_TENSOR_NAME = 'meta_' class StringsAPI(ForwardAPI): def __init__(self, api_item_yaml): super(StringsAPI, self).__init__(api_item_yaml) def get_api_func_name(self): return self.api def gene_api_declaration(self): return f""" // {", ".join(self.outputs['names'])} PADDLE_API {self.outputs['return_type']} {self.get_api_func_name()}({self.args_str['args_declare']}); """ def get_kernel_tensor_out_type(self, output_name): strings_type = 'TensorType::DENSE_TENSOR' if output_name.endswith('@StringTensor'): strings_type = 'TensorType::STRING_TENSOR' return strings_type def get_tensor_type(self, kernel_tensor_out_type): tensor_type_dict = { "TensorType::DENSE_TENSOR": "phi::DenseTensor", "TensorType::STRING_TENSOR": "phi::StringTensor", } return tensor_type_dict[kernel_tensor_out_type] def gene_output(self, output_type_list, set_out_func, code_indent, inplace_flag=False): kernel_output = "" output_names = [] output_create = "" if len(output_type_list) == 1: kernel_output = 'kernel_out' output_names.append('kernel_out') kernel_tensor_out_type = self.get_kernel_tensor_out_type( self.outputs['names'][0]) tensor_type = self.get_tensor_type(kernel_tensor_out_type) inplace_assign = " = " + self.inplace_map[self.outputs['names'][ 0]] if inplace_flag and self.inplace_map is not None and self.outputs[ 'names'][0] in self.inplace_map else "" output_create = f""" {self.outputs['return_type']} api_output{inplace_assign}; {tensor_type}* kernel_out = dynamic_cast<{tensor_type}*>({set_out_func}(kernel_backend, &api_output, {kernel_tensor_out_type}));""" elif len(output_type_list) > 1: output_create = f""" {self.outputs['return_type']} api_output;""" for i in range(len(output_type_list)): kernel_output = kernel_output + f'kernel_out_{i}, ' output_names.append(f'kernel_out_{i}') kernel_tensor_out_type = self.get_kernel_tensor_out_type( self.outputs['names'][i]) tensor_type = self.get_tensor_type(kernel_tensor_out_type) if inplace_flag and self.inplace_map is not None and self.outputs[ 'names'][i] in self.inplace_map: output_create = output_create + f""" std::get<{i}>(api_output) = {self.inplace_map[self.outputs['names'][i]]};""" output_create = output_create + f""" {tensor_type}* kernel_out_{i} = dynamic_cast<{tensor_type}*>({set_out_func}(&std::get<{i}>(api_output), {kernel_tensor_out_type}));""" kernel_output = kernel_output[:-2] else: raise ValueError( "{} : Output error: the output should not be empty.".format( self.api)) return kernel_output, output_names, output_create def get_kernel_args(self, code_indent): input_trans_map = { 'const Tensor&': 'const phi::StringTensor&', 'const std::vector&': 'const std::vector&', 'const paddle::optional&': 'paddle::optional', 'const paddle::optional>&': 'paddle::optional&>' } out_trans_map = { 'Tensor': 'phi::StringTensor*', 'std::vector': 'std::vector&' } input_names = self.inputs['names'] input_infos = self.inputs['input_info'] kernel_args_type_list = ['const platform::DeviceContext&'] attr_names = self.attrs['names'] kernel_param = self.kernel['param'] if kernel_param is None: kernel_param = input_names + attr_names input_tensor_code = "" # set input_tensor_code for i, input_name in enumerate(input_names): input_tensor_code = input_tensor_code + f""" {code_indent} auto {PREFIX_TENSOR_NAME}{input_name} = TensorToStringTensor({input_name});""" # set kernel_args kernel_args = "*dev_ctx, " for param in kernel_param: if param in input_names: if param in self.optional_vars: kernel_args = kernel_args + PREFIX_TENSOR_NAME + param + ", " else: if self.inputs['input_info'][param] == "const Tensor&": kernel_args = kernel_args + "*" + PREFIX_TENSOR_NAME + param + ", " elif self.inputs['input_info'][ input_name] == "const std::vector&": kernel_args = kernel_args + PREFIX_TENSOR_NAME + param + ", " else: # do nothing pass kernel_in_type = input_trans_map[input_infos[param]] kernel_args_type_list.append(kernel_in_type) elif param in attr_names: # set attr for kernel_context if 'IntArray' in self.attrs['attr_info'][param][0]: kernel_args_type_list.append('const phi::IntArray&') param = 'phi::IntArray(' + param + ')' elif 'Scalar' in self.attrs['attr_info'][param][0]: kernel_args_type_list.append('const phi::Scalar&') param = 'phi::Scalar(' + param + ')' else: kernel_args_type_list.append(self.attrs['attr_info'][param][ 0]) kernel_args = kernel_args + param + ", " elif isinstance(param, bool): kernel_args = kernel_args + str(param).lower() + ", " else: kernel_args = kernel_args + str(param) + ", " for out_type in self.outputs['types']: kernel_args_type_list.append(out_trans_map[out_type]) # set kernel_signature kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")" return input_tensor_code, kernel_args[:-2], kernel_signature def gen_string_tensor_kernel_code(self, inplace_flag=False, code_indent=""): input_tensors, kernel_args, kernel_signature = self.get_kernel_args( code_indent) outputs_args, kernel_output_names, output_create = self.gene_output( self.outputs['types'], 'SetStringsKernelOutput', '', inplace_flag) return f""" // 1. Get kernel signature and kernel const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError( "{self.kernel['func'][0]}", {{kernel_backend, kernel_layout, kernel_data_type}}); VLOG(6) << "{self.api} api strings kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]"; VLOG(6) << "{self.api} api strings kernel: " << kernel; // 2. Get Device Context and input auto* dev_ctx = GetDeviceContextByBackend(kernel_backend); {input_tensors} // 3. Set output {output_create} {self.gene_infer_meta(kernel_output_names, code_indent)} // 4. run kernel {code_indent} using kernel_signature = {kernel_signature}; {code_indent} auto* kernel_fn = kernel.GetVariadicKernelFn(); {code_indent} (*kernel_fn)({kernel_args}, {outputs_args}); {code_indent} return {self.gene_return_code()};""" def gene_kernel_select(self) -> str: api = self.api input_names = self.inputs['names'] attrs = self.attrs kernel = self.kernel kernel_key_item_init = """ Backend kernel_backend = Backend::UNDEFINED; DataLayout kernel_layout = DataLayout::PSTRING_UNION; DataType kernel_data_type = DataType::PSTRING; """ # Check the tensor options attr_backend_count = 0 attr_layout_count = 0 attr_data_type_count = 0 for attr_name in attrs['names']: if attrs['attr_info'][attr_name][0] == 'Backend': assert kernel['backend'] is not None, \ f"{api} api: When there is a parameter with 'Backend' type in attributes, you must set backend of kernel manually." attr_backend_count = attr_backend_count + 1 # preprocess kernel configures kernel_select_code = "" if kernel['backend'] is not None: if '>' in kernel['backend']: vars_list = kernel['backend'].split('>') assert len( vars_list ) == 2, f"{api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}." assert (vars_list[0].strip() in attrs['names']) and (attrs['attr_info'][vars_list[0].strip()][0] == 'const Place&'), \ f"{api} api: When use '>' to set kernel backend, the first param should be a attribute with Place type." kernel_select_code = kernel_select_code + f""" kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()}); """ else: args_str = "" for ele in kernel['backend'].split(','): args_str = args_str + ele.strip() + ', ' kernel_select_code = kernel_select_code + f""" kernel_backend = ParseBackend({args_str[:-2]}); """ kernel_select_args = "" for input_name in input_names: kernel_select_args = kernel_select_args + input_name + ", " if len(kernel_select_args) > 2: kernel_select_args = kernel_select_args[:-2] kernel_select_code = kernel_key_item_init + kernel_select_code if len(input_names) > 0: if self.support_selected_rows_kernel: kernel_select_code = kernel_select_code + f""" KernelType kernel_type = ParseKernelTypeByInputArgs({", ".join(input_names)}); """ kernel_select_code = kernel_select_code + f""" auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args}); auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey(); kernel_backend = kernel_key.backend();""" return kernel_select_code def gene_base_api_code(self, inplace_flag=False): api_func_name = self.get_api_func_name() return f""" PADDLE_API {self.outputs['return_type']} {api_func_name}({self.args_str["args_define"]}) {{ {self.gene_kernel_select()} {self.gen_string_tensor_kernel_code(inplace_flag)} }} """ def header_include(): return """ #include #include "paddle/phi/api/include/tensor.h" #include "paddle/phi/common/scalar.h" #include "paddle/phi/common/int_array.h" #include "paddle/utils/optional.h" """ def source_include(header_file_path): return f""" #include "{header_file_path}" #include "paddle/phi/api/lib/api_gen_utils.h" #include "paddle/phi/core/kernel_context.h" #include "paddle/phi/core/string_tensor.h" #include "paddle/phi/infermeta/strings/nullary.h" #include "paddle/phi/infermeta/strings/unary.h" #include "paddle/phi/api/lib/api_registry.h" #include "paddle/phi/api/lib/kernel_dispatch.h" #include "paddle/phi/core/kernel_registry.h" """ def api_register(): return """ PD_REGISTER_API(StringsApi); """ def api_namespace(): return (""" namespace paddle { namespace experimental { namespace strings { """, """ } // namespace strings } // namespace experimental } // namespace paddle """) def generate_api(api_yaml_path, header_file_path, source_file_path): with open(api_yaml_path, 'r') as f: apis = yaml.load(f, Loader=yaml.FullLoader) header_file = open(header_file_path, 'w') source_file = open(source_file_path, 'w') namespace = api_namespace() header_file.write("#pragma once\n") header_file.write(header_include()) header_file.write(namespace[0]) include_header_file = "paddle/phi/api/include/strings_api.h" source_file.write(source_include(include_header_file)) source_file.write(namespace[0]) for api in apis: strings_api = StringsAPI(api) header_file.write(strings_api.gene_api_declaration()) source_file.write(strings_api.gene_api_code()) header_file.write(namespace[1]) source_file.write(namespace[1]) # source_file.write(api_register()) header_file.close() source_file.close() def main(): parser = argparse.ArgumentParser( description='Generate PaddlePaddle C++ Strings API files') parser.add_argument( '--api_yaml_path', help='path to sparse api yaml file', default='python/paddle/utils/code_gen/strings_api.yaml') parser.add_argument( '--api_header_path', help='output of generated api header code file', default='paddle/phi/api/include/strings_api.h') parser.add_argument( '--api_source_path', help='output of generated api source code file', default='paddle/phi/api/lib/strings_api.cc') options = parser.parse_args() api_yaml_path = options.api_yaml_path header_file_path = options.api_header_path source_file_path = options.api_source_path generate_api(api_yaml_path, header_file_path, source_file_path) if __name__ == '__main__': main()