trainer.h 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <fstream>
#include <memory>
#include <mutex>  // NOLINT
#include <string>
#include <thread>  // NOLINT
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
D
dongdaxiang 已提交
25
#include "paddle/fluid/framework/data_set.h"
26 27 28 29 30 31 32
#include "paddle/fluid/framework/device_worker.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
D
dongdaxiang 已提交
33
#include "paddle/fluid/platform/port.h"
34 35 36 37 38 39 40 41 42 43 44

namespace paddle {
namespace framework {

class TrainerBase {
 public:
  TrainerBase() {}
  virtual ~TrainerBase() {}
  // model memory are hosted in root_scope
  void SetScope(Scope* root_scope);
  void SetDebug(const bool debug) { debug_ = debug; }
45
  void SetDataset(Dataset* dataset_ptr) { dataset_ptr_ = dataset_ptr; }
D
dongdaxiang 已提交
46
  virtual void Initialize(const TrainerDesc& trainer_desc,
47
                          Dataset* data_set) = 0;
48 49 50 51 52
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place) = 0;
  virtual void InitOtherEnv(const ProgramDesc& main_program) = 0;
  virtual void Run() = 0;
  virtual void Finalize() = 0;
53
  virtual Scope* GetWorkerScope(int thread_id) = 0;
54 55 56 57

 protected:
  Scope* root_scope_;
  bool debug_;
58
  Dataset* dataset_ptr_;
59 60 61 62 63 64 65 66 67 68 69 70 71
  TrainerDesc trainer_desc_;

  // For dump param or field
  bool need_dump_field_ = false;
  std::string user_define_dump_filename_;
  bool need_dump_param_ = false;
  std::string dump_fields_path_;
  std::string dump_converter_;
  std::vector<std::string> dump_param_;
  std::vector<std::string> dump_fields_;
  int dump_thread_num_;
  std::vector<std::thread> dump_thread_;
  std::shared_ptr<paddle::framework::ChannelObject<std::string>> queue_;
72 73 74 75 76 77 78 79 80
};

// general trainer for async execution
// local trainer and distributed trainer are supported
// depends on the assigned device_worker
class MultiTrainer : public TrainerBase {
 public:
  MultiTrainer() {}
  virtual ~MultiTrainer() {}
D
dongdaxiang 已提交
81
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
82 83
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
84
  virtual void InitOtherEnv(const ProgramDesc& main_program);
85 86
  virtual void Run();
  virtual void Finalize();
87 88
  virtual void FinalizeDumpEnv();
  virtual void InitDumpEnv();
89
  virtual Scope* GetWorkerScope(int thread_id);
90
  virtual void DumpWork(int tid);
91 92 93 94

 protected:
  int thread_num_;
  std::vector<std::thread> threads_;
J
jiaqi 已提交
95
  std::vector<DataFeed*> readers_;
96
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
97
  std::vector<std::string> need_merge_var_names_;
98 99 100 101 102 103 104 105 106 107 108

  bool need_dump_field_;
  std::string dump_fields_path_;
  std::string dump_converter_;
  int mpi_rank_;
  int mpi_size_;
  int dump_file_num_;

  std::vector<std::thread> dump_thread_;
  int dump_thread_num_;
  std::shared_ptr<paddle::framework::ChannelObject<std::string>> queue_;
109 110 111 112 113 114
};

class DistMultiTrainer : public MultiTrainer {
 public:
  DistMultiTrainer() {}
  virtual ~DistMultiTrainer() {}
D
dongdaxiang 已提交
115
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
116 117
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
118
  virtual void InitOtherEnv(const ProgramDesc& main_program);
119
  virtual void Run();
120
  virtual void Finalize();
121 122
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
123 124
  virtual void FinalizeDumpEnv();
  virtual void InitDumpEnv();
125
  virtual Scope* GetWorkerScope(int thread_id);
T
Thunderbrook 已提交
126
  virtual void DumpWork(int tid);
127 128 129 130 131

 protected:
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
};

132
#if defined(PADDLE_WITH_NCCL)
H
hutuxian 已提交
133 134 135 136 137 138 139 140 141 142
class PipelineTrainer : public TrainerBase {
 public:
  PipelineTrainer() {}
  ~PipelineTrainer() override {}
  void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set) override;
  void InitTrainerEnv(const ProgramDesc& main_program,
                      const platform::Place& place) override;
  void InitOtherEnv(const ProgramDesc& main_program) override {}
  void Run() override;
  void Finalize() override;
143
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

 protected:
  int section_num_;
  int pipeline_num_;
  int scope_queue_size_;
  int sync_steps_;

  SectionWorkerParameter pipeline_config_;

  // The in/output var names for each section
  std::vector<std::unique_ptr<std::vector<std::string>>> in_var_names_;
  std::vector<std::unique_ptr<std::vector<std::string>>> out_var_names_;

  // Counter for the running thread
  std::vector<std::vector<int*>> worker_count_;
  std::vector<std::vector<std::unique_ptr<std::mutex>>> worker_count_mutex_;

  // worker: [section_id][pipeline_id][thread_id]
  std::vector<std::vector<
      std::vector<std::shared_ptr<paddle::framework::DeviceWorker>>>>
      workers_;
  std::vector<std::thread> section_threads_;

  // We use scope to maintain context info, and scopes
  // will be deliverd between different sections.
  std::vector<std::vector<std::unique_ptr<ScopeQueue>>> scope_queues_;
  std::vector<Scope*> pipeline_scopes_;

  // The parameters that should be syncronized between different cards using
  // nccl all-reduce
  std::shared_ptr<std::vector<std::string>> param_need_sync_;
H
hutuxian 已提交
175
  std::vector<std::string> persistable_vars_;
H
hutuxian 已提交
176 177 178
  std::vector<std::unique_ptr<SyncFunctor>> sync_functors_;
  std::shared_ptr<platform::NCCLContextMap> nccl_ctx_map_;

J
jiaqi 已提交
179
  std::vector<DataFeed*> readers_;
H
hutuxian 已提交
180 181

  void InitFirstScopeQueue(ScopeQueue* scope_queue, int pipeline_id,
H
hutuxian 已提交
182 183
                           const ProgramDesc& main_program,
                           const Scope& root_scope);
H
hutuxian 已提交
184 185 186 187
  void CopyParameters(const Scope& root_scope, int pipeline_id);
  void construct_sync_functor();
};
#endif
188 189
}  // namespace framework
}  // namespace paddle