trainer.h 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <fstream>
#include <memory>
#include <mutex>  // NOLINT
#include <string>
#include <thread>  // NOLINT
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
D
dongdaxiang 已提交
25
#include "paddle/fluid/framework/data_set.h"
26 27 28 29 30 31 32
#include "paddle/fluid/framework/device_worker.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
D
dongdaxiang 已提交
33
#include "paddle/fluid/platform/port.h"
34 35 36 37 38 39 40 41 42 43 44

namespace paddle {
namespace framework {

class TrainerBase {
 public:
  TrainerBase() {}
  virtual ~TrainerBase() {}
  // model memory are hosted in root_scope
  void SetScope(Scope* root_scope);
  void SetDebug(const bool debug) { debug_ = debug; }
45
  void SetDataset(Dataset* dataset_ptr) { dataset_ptr_ = dataset_ptr; }
D
dongdaxiang 已提交
46
  virtual void Initialize(const TrainerDesc& trainer_desc,
47
                          Dataset* data_set) = 0;
48 49 50 51 52 53 54 55 56
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place) = 0;
  virtual void InitOtherEnv(const ProgramDesc& main_program) = 0;
  virtual void Run() = 0;
  virtual void Finalize() = 0;

 protected:
  Scope* root_scope_;
  bool debug_;
57
  Dataset* dataset_ptr_;
58 59 60 61 62 63 64 65 66
};

// general trainer for async execution
// local trainer and distributed trainer are supported
// depends on the assigned device_worker
class MultiTrainer : public TrainerBase {
 public:
  MultiTrainer() {}
  virtual ~MultiTrainer() {}
D
dongdaxiang 已提交
67
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program) {}
  virtual void Run();
  virtual void Finalize();

 protected:
  int thread_num_;
  std::vector<std::thread> threads_;
  std::vector<std::shared_ptr<DataFeed>> readers_;
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
};

class DistMultiTrainer : public MultiTrainer {
 public:
  DistMultiTrainer() {}
  virtual ~DistMultiTrainer() {}
D
dongdaxiang 已提交
85
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
86
  virtual void InitOtherEnv(const ProgramDesc& main_program);
87
  virtual void Run();
88 89 90 91 92 93
  virtual void Finalize();

 protected:
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
};

H
hutuxian 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
class PipelineTrainer : public TrainerBase {
 public:
  PipelineTrainer() {}
  ~PipelineTrainer() override {}
  void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set) override;
  void InitTrainerEnv(const ProgramDesc& main_program,
                      const platform::Place& place) override;
  void InitOtherEnv(const ProgramDesc& main_program) override {}
  void Run() override;
  void Finalize() override;

 protected:
  int section_num_;
  int pipeline_num_;
  int scope_queue_size_;
  int sync_steps_;

  SectionWorkerParameter pipeline_config_;

  // The in/output var names for each section
  std::vector<std::unique_ptr<std::vector<std::string>>> in_var_names_;
  std::vector<std::unique_ptr<std::vector<std::string>>> out_var_names_;

  // Counter for the running thread
  std::vector<std::vector<int*>> worker_count_;
  std::vector<std::vector<std::unique_ptr<std::mutex>>> worker_count_mutex_;

  // worker: [section_id][pipeline_id][thread_id]
  std::vector<std::vector<
      std::vector<std::shared_ptr<paddle::framework::DeviceWorker>>>>
      workers_;
  std::vector<std::thread> section_threads_;

  // We use scope to maintain context info, and scopes
  // will be deliverd between different sections.
  std::vector<std::vector<std::unique_ptr<ScopeQueue>>> scope_queues_;
  std::vector<Scope*> pipeline_scopes_;

  // The parameters that should be syncronized between different cards using
  // nccl all-reduce
  std::shared_ptr<std::vector<std::string>> param_need_sync_;
  std::vector<std::unique_ptr<SyncFunctor>> sync_functors_;
  std::shared_ptr<platform::NCCLContextMap> nccl_ctx_map_;

  std::vector<std::shared_ptr<DataFeed>> readers_;

  void InitFirstScopeQueue(ScopeQueue* scope_queue, int pipeline_id,
                           const ProgramDesc& main_program);
  void CopyParameters(const Scope& root_scope, int pipeline_id);
  void construct_sync_functor();
};
#endif
147 148
}  // namespace framework
}  // namespace paddle