conv_cudnn_helper.h 24.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <algorithm>
18
#include <array>
19
#include <memory>
20
#include <string>
Q
qingqing01 已提交
21
#include <vector>
22

23
#include "paddle/fluid/framework/conv_search_cache.h"
Q
qingqing01 已提交
24 25
#include "paddle/fluid/framework/operator_kernel_configs.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
26
#include "paddle/fluid/operators/eigen/eigen_function.h"
27
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
28
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
H
hong 已提交
29
#include "paddle/phi/backends/gpu/gpu_context.h"
30

Q
qingqing01 已提交
31 32 33
namespace paddle {
namespace operators {

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
using Tensor = framework::Tensor;
using DataLayout = platform::DataLayout;
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
using framework::AlgorithmsCache;
static inline void GetNCDHW(const framework::DDim& dims,
                            const DataLayout& layout, int* N, int* C, int* D,
                            int* H, int* W) {
  *N = dims[0];
  *C = layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1];
  int i = layout == DataLayout::kNCHW ? 0 : 1;
  if (dims.size() == 5) {
    *D = dims[2 - i];
    *H = dims[3 - i];
    *W = dims[4 - i];
  } else {
    *D = 1;
    *H = dims[2 - i];
    *W = dims[3 - i];
  }
}

template <typename DeviceContext, typename T, size_t D>
H
hong 已提交
57
static void RemovePaddingSlice(const phi::GPUContext& context,
58 59 60
                               const Tensor* input, Tensor* out,
                               const std::vector<int>& starts,
                               const std::vector<int>& axes) {
H
hong 已提交
61
  auto& place = *context.eigen_device();
62 63
  auto in_dims = input->dims();
  auto new_out_dims = out->dims();
64 65
  auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = new_out_dims[i];
  }

  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *input);

  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out, new_out_dims);
87 88
  EigenSlice<std::decay_t<decltype(place)>, T, D>::Eval(place, out_t, in_t,
                                                        offsets, extents);
89 90
}

91 92 93 94 95 96 97 98
template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T>& v) {
  out << "[";
  for (auto const& tmp : v) out << tmp << ",";
  out << "]";
  return out;
}

99 100 101
inline int MaxBwdFilterAlgos(cudnnHandle_t cudnn_handle) {
  int max_algos = 0;
#if CUDNN_VERSION_MIN(7, 0, 1)
102
  PADDLE_ENFORCE_GPU_SUCCESS(
103 104 105 106 107 108
      platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(
          cudnn_handle, &max_algos));
#endif
  return max_algos;
}

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
template <typename PerfType, typename AlgoType>
void ChooseAlgoByWorkspace(PerfType* perf_results, size_t perf_num,
                           size_t workspace_byte, AlgoType* algo) {
  for (size_t i = 0; i < perf_num; ++i) {
    auto result = perf_results[i];
    if (result.status == CUDNN_STATUS_SUCCESS &&
        result.memory < workspace_byte) {
      *algo = result.algo;
      VLOG(3) << "    algo: " << result.algo << ", time: " << result.time
              << " ms, wksp = " << result.memory
              << ", status = " << result.status;
      return;
    }
  }
  VLOG(3) << "Can not find alog that requires memory < "
          << static_cast<double>(workspace_byte) / (1 << 20) << " MB";
}

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
template <typename PerfType, typename AlgoType>
void ChooseAlgo(const std::vector<PerfType>& perf_results,
                size_t workspace_byte, AlgoType* algo) {
  VLOG(3) << "=========BwdFilterAlgo Perf result=========";
  for (const auto& result : perf_results) {
    auto math_type_str = "False";
    if (result.mathType == CUDNN_TENSOR_OP_MATH) {
      math_type_str = "True";
    }
    VLOG(3) << "    algo: " << result.algo << ", TensorCore: " << math_type_str
            << ", time: " << result.time << " ms"
            << ", wksp = " << result.memory << ", status = " << result.status;
  }

  for (size_t i = 0; i != perf_results.size(); ++i) {
    const auto& result = perf_results[i];
    if (result.status == CUDNN_STATUS_SUCCESS &&
        (result.memory <= workspace_byte)) {
      if ((result.mathType == CUDNN_TENSOR_OP_MATH) &&
          (i != perf_results.size() - 1)) {
        const auto& next_result = perf_results[i + 1];
        if (next_result.status == CUDNN_STATUS_SUCCESS &&
            next_result.algo == result.algo &&
            next_result.memory == result.memory &&
            next_result.mathType != CUDNN_TENSOR_OP_MATH &&
            next_result.time < 1.01 * result.time) {
          // Skip over this result- it's not really a Tensor Core algo.
          // Because it is only 1% performance difference.
          // Prefer to choose the next equivalent non-Tensor Core algo.
          continue;
        }
      }
      *algo = result.algo;
      auto math_type_str = "0";
      if (result.mathType == CUDNN_TENSOR_OP_MATH) {
        math_type_str = "1";
      }
      VLOG(3) << "    choose algo: " << result.algo << ", TC: " << math_type_str
              << ", time: " << result.time << " ms"
              << ", wksp = " << result.memory << ", status = " << result.status;
L
limingshu 已提交
167
      break;
168 169 170 171
    }
  }
}

172
using framework::ConvSearchCache;
Q
qingqing01 已提交
173

H
hong 已提交
174
static void SetConvMathType(const phi::GPUContext& ctx, cudnnDataType_t dtype,
175 176
                            const platform::ConvolutionDescriptor& cdesc) {
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
H
hong 已提交
177
  auto& dev_ctx = ctx;
178
  if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
179
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
180 181 182 183 184 185
        cdesc.desc(), CUDNN_TENSOR_OP_MATH));
    VLOG(5) << "use cudnn_tensor_op_math";
#if CUDA_VERSION >= 11000
#if CUDNN_VERSION_MIN(8, 1, 0)
  } else if (dev_ctx.GetComputeCapability() >= 80 &&
             dtype == CUDNN_DATA_BFLOAT16) {
186
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
187 188 189
        cdesc.desc(), CUDNN_TENSOR_OP_MATH));
#endif  // CUDNN_VERSION_MIN(8, 1, 0)
  } else if (dtype == CUDNN_DATA_FLOAT && !cdesc.allow_tf32_) {
190
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
191 192 193
        cdesc.desc(), CUDNN_FMA_MATH));
#endif  // CUDA_VERSION >= 11000
  } else {
194
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
195 196 197 198 199 200
        cdesc.desc(), CUDNN_DEFAULT_MATH));
    VLOG(5) << "NOT use cudnn_tensor_op_math";
  }
#endif
}

Q
qingqing01 已提交
201 202 203 204 205 206
struct ConvArgs {
  cudnnHandle_t handle;
  platform::TensorDescriptor idesc, odesc;
  platform::FilterDescriptor wdesc;
  platform::ConvolutionDescriptor cdesc;
  const framework::Tensor *x, *w, *o;
207
  cudnnDataType_t cudnn_dtype;
Q
qingqing01 已提交
208 209 210 211 212 213 214 215 216 217

  // strides
  std::vector<int> s;
  // paddings
  std::vector<int> p;
  // dilations
  std::vector<int> d;

  ConvArgs(const framework::Tensor* x, const framework::Tensor* w,
           const framework::Tensor* o, const std::vector<int> s,
218 219 220
           const std::vector<int> p, const std::vector<int> d,
           cudnnDataType_t dtype)
      : x(x), w(w), o(o), s(s), p(p), d(d), cudnn_dtype(dtype) {}
Q
qingqing01 已提交
221 222 223 224 225 226 227 228 229 230 231 232
};

template <typename perf_t>
struct SearchAlgorithm {};

template <>
struct SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t> {
  using perf_t = cudnnConvolutionFwdAlgoPerf_t;
  using algo_t = cudnnConvolutionFwdAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
H
hong 已提交
233
                     bool deterministic, const phi::GPUContext& ctx) {
Q
qingqing01 已提交
234
    auto dtype = platform::CudnnDataType<T>::type;
235
    bool has_got_workspace_size = true;
Q
qingqing01 已提交
236
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
237
    size_t workspace_size = 0;
Q
qingqing01 已提交
238
    algo_t algo;
239
    SetConvMathType(ctx, dtype, args.cdesc);
240

241
    if (!exhaustive_search && !deterministic) {
242 243 244 245
#if CUDNN_VERSION >= 7001
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(new perf_t[kNUM_CUDNN_FWD_ALGS]);
246
      PADDLE_ENFORCE_GPU_SUCCESS(
247 248 249 250
          platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
              args.handle, args.idesc.desc(), args.wdesc.desc(),
              args.cdesc.desc(), args.odesc.desc(), kNUM_CUDNN_FWD_ALGS,
              &perf_count, perf_results.get()));
251
      algo = (perf_results.get())[best_algo_idx].algo;
252
      workspace_size = (perf_results.get())[best_algo_idx].memory;
253 254

      if (workspace_size > workspace_size_limit) {
255
#if CUDNN_VERSION >= 8000
256 257 258 259
        // cudnnGetConvolutionForwardAlgorithm is removed in CUDNN-8
        ChooseAlgoByWorkspace<perf_t, algo_t>(perf_results.get(),
                                              kNUM_CUDNN_FWD_ALGS,
                                              workspace_size_limit, &algo);
260 261 262 263 264
#else
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
265
        PADDLE_ENFORCE_GPU_SUCCESS(
266 267 268 269 270 271
            platform::dynload::cudnnGetConvolutionForwardAlgorithm(
                args.handle, args.idesc.desc(), args.wdesc.desc(),
                args.cdesc.desc(), args.odesc.desc(),
                CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
#endif
272 273
      }
#else
274
      PADDLE_ENFORCE_GPU_SUCCESS(
275 276 277 278 279
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
              args.handle, args.idesc.desc(), args.wdesc.desc(),
              args.cdesc.desc(), args.odesc.desc(),
              CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
280
#endif
Q
qingqing01 已提交
281
      VLOG(3) << "choose algo " << algo;
282 283
    } else if (deterministic) {
      algo = static_cast<cudnnConvolutionFwdAlgo_t>(1);
Q
qingqing01 已提交
284
    } else {
H
hong 已提交
285
      auto& dev_ctx = ctx;
Q
qingqing01 已提交
286 287
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();

288
      AlgorithmsCache<algo_t>& algo_cache =
289
          *(framework::ConvSearchCache::Instance().GetForward());
290

291 292
      auto x_dims = phi::vectorize(args.x->dims());
      auto w_dims = phi::vectorize(args.w->dims());
Q
qingqing01 已提交
293

294 295 296
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t:"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;
297

Q
qingqing01 已提交
298
      algo = algo_cache.GetAlgorithm(
299 300
          x_dims, w_dims, args.s, args.p, args.d, 0,
          static_cast<int64_t>(args.cudnn_dtype), [&]() {
Q
qingqing01 已提交
301 302 303 304
            int returned_algo_count;
            std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;

            auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
305
              PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
                  platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                      args.handle, args.idesc.desc(), args.x->data<T>(),
                      args.wdesc.desc(), args.w->data<T>(), args.cdesc.desc(),
                      args.odesc.desc(), const_cast<T*>(args.o->data<T>()),
                      kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
                      perf_stat.data(), cudnn_workspace_ptr,
                      workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "FwdAlgo Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }
            return perf_stat[0].algo;
          });
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
331
    PADDLE_ENFORCE_GPU_SUCCESS(
332 333 334
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
            args.handle, args.idesc.desc(), args.wdesc.desc(),
            args.cdesc.desc(), args.odesc.desc(), algo, &workspace_size));
Q
qingqing01 已提交
335 336 337 338 339 340 341 342 343 344 345
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t> {
  using perf_t = cudnnConvolutionBwdDataAlgoPerf_t;
  using algo_t = cudnnConvolutionBwdDataAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
H
hong 已提交
346
                     bool deterministic, const phi::GPUContext& ctx) {
Q
qingqing01 已提交
347 348
    auto dtype = platform::CudnnDataType<T>::type;
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
349 350
    size_t workspace_size = 0;
    bool has_got_workspace_size = true;
Q
qingqing01 已提交
351
    algo_t algo;
352
    SetConvMathType(ctx, dtype, args.cdesc);
353

354
    if (!exhaustive_search && !deterministic) {
355 356 357 358 359
#if CUDNN_VERSION >= 7001
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(
          new perf_t[kNUM_CUDNN_BWD_DATA_ALGS]);
360
      PADDLE_ENFORCE_GPU_SUCCESS(
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm_v7(
              args.handle, args.wdesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.idesc.desc(), kNUM_CUDNN_BWD_DATA_ALGS,
              &perf_count, perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;

#if CUDNN_VERSION < 7500
      int stride_dim = args.x->dims().size() - 2;
      bool blacklist = std::any_of(args.s.begin(), args.s.begin() + stride_dim,
                                   [=](int n) { return n != 1; });
      if (blacklist && (static_cast<cudnnConvolutionBwdDataAlgo_t>(
                            perf_results[best_algo_idx].algo) ==
                            CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING ||
                        static_cast<cudnnConvolutionBwdDataAlgo_t>(
                            perf_results[best_algo_idx].algo) ==
                            CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT)) {
        algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
      }
#endif
      workspace_size = GetWorkspaceSize(args, algo);
      if (workspace_size > workspace_size_limit) {
        has_got_workspace_size = false;
383
#if CUDNN_VERSION >= 8000
384 385 386 387
        // cudnnGetConvolutionBackwardDataAlgorithm is removed in CUDNN-8
        ChooseAlgoByWorkspace<perf_t, algo_t>(perf_results.get(),
                                              kNUM_CUDNN_BWD_DATA_ALGS,
                                              workspace_size_limit, &algo);
388 389 390 391 392
#else
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
393
        PADDLE_ENFORCE_GPU_SUCCESS(
394 395 396 397 398 399
            platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
                args.handle, args.wdesc.desc(), args.odesc.desc(),
                args.cdesc.desc(), args.idesc.desc(),
                CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
#endif
400 401
      }
#else
402
      PADDLE_ENFORCE_GPU_SUCCESS(
403 404 405 406 407
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
              args.handle, args.wdesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.idesc.desc(),
              CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
408
#endif
Q
qingqing01 已提交
409 410 411
    } else if (deterministic) {
      return CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
    } else {
H
hong 已提交
412
      auto& dev_ctx = ctx;
Q
qingqing01 已提交
413 414
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();

415
      AlgorithmsCache<algo_t>& algo_cache =
416
          *(framework::ConvSearchCache::Instance().GetBackwardData());
417

418 419
      auto x_dims = phi::vectorize(args.x->dims());
      auto w_dims = phi::vectorize(args.w->dims());
Q
qingqing01 已提交
420

421 422 423
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;
424

Q
qingqing01 已提交
425
      algo = algo_cache.GetAlgorithm(
426 427
          x_dims, w_dims, args.s, args.p, args.d, 0,
          static_cast<int64_t>(args.cudnn_dtype), [&]() {
Q
qingqing01 已提交
428
            int returned_algo_count;
429
            std::array<perf_t, kNUM_CUDNN_BWD_DATA_ALGS> perf_stat;
Q
qingqing01 已提交
430 431

            auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
432
              PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
                  platform::dynload::
                      cudnnFindConvolutionBackwardDataAlgorithmEx(
                          args.handle, args.wdesc.desc(), args.w->data<T>(),
                          args.odesc.desc(), args.o->data<T>(),
                          args.cdesc.desc(), args.idesc.desc(),
                          const_cast<T*>(args.x->data<T>()),
                          kNUM_CUDNN_BWD_DATA_ALGS, &returned_algo_count,
                          perf_stat.data(), cudnn_workspace_ptr,
                          workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "BwdDataAlgo Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }

            return perf_stat[0].algo;
          });
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
461
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
462
        platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
463 464
            args.handle, args.wdesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.idesc.desc(), algo, &workspace_size));
Q
qingqing01 已提交
465 466 467 468 469 470 471 472 473 474 475
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t> {
  using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t;
  using algo_t = cudnnConvolutionBwdFilterAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
H
hong 已提交
476
                     bool deterministic, const phi::GPUContext& ctx) {
477
    platform::CUDAGraphCaptureModeGuard guard;
Q
qingqing01 已提交
478 479
    auto dtype = platform::CudnnDataType<T>::type;
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
480 481
    size_t workspace_size = 0;
    bool has_got_workspace_size = true;
482
    SetConvMathType(ctx, dtype, args.cdesc);
Q
qingqing01 已提交
483 484

    algo_t algo;
485
    if (!exhaustive_search && !deterministic) {
486 487 488 489 490 491
#if CUDNN_VERSION >= 7001
      using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t;
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(
          new perf_t[kNUM_CUDNN_BWD_FILTER_ALGS]);
492
      PADDLE_ENFORCE_GPU_SUCCESS(
493 494 495 496 497
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm_v7(
              args.handle, args.idesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.wdesc.desc(), kNUM_CUDNN_BWD_FILTER_ALGS,
              &perf_count, perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;
498 499
      workspace_size = (perf_results.get())[best_algo_idx].memory;

500
      if (workspace_size > workspace_size_limit) {
501
        workspace_size = workspace_size_limit;
502 503 504 505 506 507 508 509 510 511
#if CUDNN_VERSION >= 8000
        // cudnnGetConvolutionBackwardFilterAlgorithm is removed in CUDNN-8
        ChooseAlgoByWorkspace<perf_t, algo_t>(perf_results.get(),
                                              kNUM_CUDNN_BWD_FILTER_ALGS,
                                              workspace_size_limit, &algo);
#else
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
512
        PADDLE_ENFORCE_GPU_SUCCESS(
513 514 515 516 517 518
            platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
                args.handle, args.idesc.desc(), args.odesc.desc(),
                args.cdesc.desc(), args.wdesc.desc(),
                CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
#endif
519 520
      }
#else
521
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
522 523 524 525 526
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
              args.handle, args.idesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.wdesc.desc(),
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
527
#endif
Q
qingqing01 已提交
528 529 530
    } else if (deterministic) {
      return CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
    } else {
H
hong 已提交
531
      auto& dev_ctx = ctx;
Q
qingqing01 已提交
532
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();
533
      AlgorithmsCache<algo_t>& algo_cache =
534
          *(framework::ConvSearchCache::Instance().GetBackwardFilter());
Q
qingqing01 已提交
535

536 537
      auto x_dims = phi::vectorize(args.x->dims());
      auto w_dims = phi::vectorize(args.w->dims());
Q
qingqing01 已提交
538

539 540 541
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t:"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;
542 543 544 545 546
      if (dtype != CUDNN_DATA_HALF) {
        algo = algo_cache.GetAlgorithm(
            x_dims, w_dims, args.s, args.p, args.d, 0,
            static_cast<int64_t>(args.cudnn_dtype), [&]() {
              int returned_algo_count;
547
              std::array<perf_t, kNUM_CUDNN_BWD_FILTER_ALGS> perf_stat;
548
              auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
549
                PADDLE_ENFORCE_GPU_SUCCESS(
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
                    platform::dynload::
                        cudnnFindConvolutionBackwardFilterAlgorithmEx(
                            args.handle, args.idesc.desc(), args.x->data<T>(),
                            args.odesc.desc(), args.o->data<T>(),
                            args.cdesc.desc(), args.wdesc.desc(),
                            const_cast<T*>(args.w->data<T>()),
                            kNUM_CUDNN_BWD_FILTER_ALGS, &returned_algo_count,
                            perf_stat.data(), cudnn_workspace_ptr,
                            workspace_size_limit));
              };
              workspace_handle.RunFuncSync(cudnn_find_func,
                                           workspace_size_limit);

              VLOG(3)
                  << "BwdFilterAlgo Perf result: (algo: stat, time, memory)";
              for (int i = 0; i < returned_algo_count; ++i) {
                const auto& stat = perf_stat[i];
                VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                        << " " << stat.memory;
              }
              return perf_stat[0].algo;
            });
      } else {
        auto max_algos = MaxBwdFilterAlgos(args.handle);
        algo = algo_cache.GetAlgorithm(
            x_dims, w_dims, args.s, args.p, args.d, 0,
            static_cast<int64_t>(args.cudnn_dtype), [&]() {
              algo_t chosen_algo;
              std::vector<perf_t> perf_results(max_algos);
              int actual_algos = 0;
580
              PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
581
                  platform::dynload::
582 583
                      cudnnFindConvolutionBackwardFilterAlgorithm(
                          args.handle, args.idesc.desc(), args.odesc.desc(),
Q
qingqing01 已提交
584
                          args.cdesc.desc(), args.wdesc.desc(),
585 586 587 588 589 590 591 592
                          perf_results.size(), &actual_algos,
                          perf_results.data()));
              perf_results.resize(actual_algos);
              ChooseAlgo<perf_t, algo_t>(perf_results, workspace_size_limit,
                                         &chosen_algo);
              return chosen_algo;
            });
      }
Q
qingqing01 已提交
593 594 595 596 597 598
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
599
    platform::CUDAGraphCaptureModeGuard guard;
Q
qingqing01 已提交
600
    size_t workspace_size = 0;
601
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
602 603 604 605 606 607 608 609 610
        platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
            args.handle, args.idesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.wdesc.desc(), algo, &workspace_size));
    return workspace_size;
  }
};

}  // namespace operators
}  // namespace paddle