beam_search_decode_op.cc 8.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
16
#include <string>
17 18

#include "paddle/fluid/operators/beam_search_decode_op.h"
Y
Yi Wang 已提交
19
#include "paddle/fluid/platform/device_context.h"
Q
Qiao Longfei 已提交
20 21 22 23

namespace paddle {
namespace operators {

24 25 26
struct BeamSearchDecodeFunctor {
  BeamSearchDecodeFunctor(const LoDTensorArray& step_ids,
                          const LoDTensorArray& step_scores,
27 28 29 30 31
                          LoDTensor* id_tensor, LoDTensor* score_tensor,
                          size_t beam_size, int end_id)
      : beam_size_(beam_size),
        end_id_(end_id),
        step_ids_origin_(step_ids),
32
        step_scores_origin_(step_scores),
33
        id_tensor_(id_tensor),
34 35 36 37 38 39 40 41 42 43 44
        score_tensor_(score_tensor) {
    tensor_on_gpu_ = false;
    // First make a copy of GPU data on CPU
    if (platform::is_gpu_place(step_ids_origin_[0].place())) {
      tensor_on_gpu_ = true;
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      auto* dev_ctx = pool.Get(step_ids_origin_[0].place());
      // Copy all tensors in the input tensor array
      for (auto& step_id : step_ids_origin_) {
        framework::LoDTensor out;
45 46 47 48 49
        if (step_id.numel() > 0) {
          dev_ctx->Wait();
          framework::TensorCopy(step_id, platform::CPUPlace(), *dev_ctx, &out);
          dev_ctx->Wait();
        }
50 51 52 53 54 55 56 57 58 59 60 61 62

        out.set_lod(step_id.lod());
        step_ids_.push_back(out);
      }
    }
    if (platform::is_gpu_place(step_scores_origin_[0].place())) {
      tensor_on_gpu_ = true;
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      auto* dev_ctx = pool.Get(step_scores_origin_[0].place());
      // Copy all tensors in the input tensor array
      for (auto& step_score : step_scores_origin_) {
        framework::LoDTensor out;
63 64 65 66 67 68
        if (step_score.numel() > 0) {
          dev_ctx->Wait();
          framework::TensorCopy(step_score, platform::CPUPlace(), *dev_ctx,
                                &out);
          dev_ctx->Wait();
        }
69 70 71 72 73 74

        out.set_lod(step_score.lod());
        step_scores_.push_back(out);
      }
    }
  }
75 76

  template <typename T>
D
dzhwinter 已提交
77
  void apply() const;
78

79
  bool tensor_on_gpu_;
80 81
  size_t beam_size_;
  int end_id_;
Y
Yan Chunwei 已提交
82 83 84
  // TODO(Superjomn) Here might result serious performance issue in the
  // concurrency
  // scenarios.
85 86 87 88
  const LoDTensorArray& step_ids_origin_;
  const LoDTensorArray& step_scores_origin_;
  LoDTensorArray step_ids_ = LoDTensorArray();
  LoDTensorArray step_scores_ = LoDTensorArray();
89 90 91 92 93
  LoDTensor* id_tensor_;
  LoDTensor* score_tensor_;
};

template <typename T>
D
dzhwinter 已提交
94
void BeamSearchDecodeFunctor::apply() const {
95
  BeamSearchDecoder<T> beam_search_decoder(beam_size_, end_id_);
96 97
  // Check if the tensor is on GPU. If so, use the CPU copy instead
  if (tensor_on_gpu_) {
98 99
    beam_search_decoder.Backtrace(step_ids_, step_scores_, id_tensor_,
                                  score_tensor_);
100
  } else {
101 102
    beam_search_decoder.Backtrace(step_ids_origin_, step_scores_origin_,
                                  id_tensor_, score_tensor_);
103
  }
104 105 106
}

template <>
D
dzhwinter 已提交
107
void BeamSearchDecodeFunctor::apply<bool>() const {
108 109 110
  PADDLE_THROW("beam search decode op does not support bool!");
}

Q
Qiao Longfei 已提交
111 112 113 114 115 116 117
class BeamSearchDecodeOp : public framework::OperatorBase {
 public:
  BeamSearchDecodeOp(const std::string& type,
                     const framework::VariableNameMap& inputs,
                     const framework::VariableNameMap& outputs,
                     const framework::AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
118 119 120 121

 private:
  void RunImpl(const framework::Scope& scope,
               const platform::Place& dev_place) const override {
Y
Yu Yang 已提交
122 123
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto& dev_ctx = *pool.Get(dev_place);
D
dzhwinter 已提交
124

X
Xin Pan 已提交
125
    framework::RuntimeContext run_ctx(Inputs(), Outputs(), scope);
126
    framework::ExecutionContext ctx(*this, scope, dev_ctx, run_ctx);
127

Q
Qiao Longfei 已提交
128 129 130
    const LoDTensorArray* ids = ctx.Input<LoDTensorArray>("Ids");
    const LoDTensorArray* scores = ctx.Input<LoDTensorArray>("Scores");
    const size_t step_num = ids->size();
131 132 133 134 135 136 137
    PADDLE_ENFORCE_GT(
        step_num, 0UL,
        platform::errors::InvalidArgument(
            "beam search steps, which is the"
            "size of Input(Ids) LoDTensorArray. beam search steps should "
            "be larger than 0, but received %d. ",
            step_num));
Q
Qiao Longfei 已提交
138
    const size_t source_num = ids->at(0).lod().at(0).size() - 1;
139 140 141 142 143 144 145 146
    PADDLE_ENFORCE_GT(
        source_num, 0UL,
        platform::errors::InvalidArgument(
            "source_num is the sequence number of the"
            "first decoding step, indicating by Input(Ids)[0].lod[0].size. "
            "The number of source_num should be larger than"
            "0, but received %d. ",
            source_num));
Q
Qiao Longfei 已提交
147 148

    for (size_t i = 0; i < step_num; ++i) {
149 150 151 152 153 154 155
      PADDLE_ENFORCE_EQ(
          ids->at(i).lod().size(), 2UL,
          platform::errors::InvalidArgument(
              "For the i step in beam search steps,"
              "the size of Input(Ids)[i].lod() should larger than 2,"
              "but received %d. ",
              ids->at(i).lod().size()));
Q
Qiao Longfei 已提交
156 157
    }

158 159 160
    size_t beam_size = ctx.Attr<int>("beam_size");
    int end_id = ctx.Attr<int>("end_id");

Q
Qiao Longfei 已提交
161 162 163 164
    // prepare output
    LoDTensor* sentenceIds = ctx.Output<LoDTensor>("SentenceIds");
    LoDTensor* sentenceScores = ctx.Output<LoDTensor>("SentenceScores");

165
    framework::VisitDataType(
Y
Yu Yang 已提交
166
        scores->at(0).type(),
167 168
        BeamSearchDecodeFunctor(*ids, *scores, sentenceIds, sentenceScores,
                                beam_size, end_id));
Q
Qiao Longfei 已提交
169 170 171 172 173
  }
};

class BeamSearchDecodeOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
174
  void Make() override {
Q
Qiao Longfei 已提交
175 176
    AddInput("Ids",
             "(LodTensorArray)"
177
             "The LodTensorArray containing the selected ids of all steps");
Q
Qiao Longfei 已提交
178 179
    AddInput("Scores",
             "(LodTensorArray)"
180 181 182 183 184 185 186 187 188 189
             "The LodTensorArray containing the selected scores of all steps");
    AddOutput(
        "SentenceIds",
        "(LodTensor)"
        "An LodTensor containing all generated id sequences for all source "
        "sentences");
    AddOutput(
        "SentenceScores",
        "(LodTensor)"
        "An LodTensor containing scores corresponding to Output(SentenceIds)");
190 191 192
    AddAttr<int>("beam_size", "beam size for beam search");
    AddAttr<int>("end_id",
                 "the token id which indicates the end of a sequence");
Q
Qiao Longfei 已提交
193
    AddComment(R"DOC(
194 195 196 197
Beam Search Decode Operator. This Operator constructs the full hypotheses for
each source sentence by walking back along the LoDTensorArray Input(ids)
whose lods can be used to restore the path in the beam search tree.

M
minqiyang 已提交
198 199 200 201
The Output(SentenceIds) and Output(SentenceScores) separately contain the
generated id sequences and the corresponding scores. The shapes and lods of the
two LodTensor are same. The lod level is 2 and the two levels separately
indicate how many hypotheses each source sentence has and how many ids each
202
hypothesis has.
Q
Qiao Longfei 已提交
203 204 205 206 207 208 209
)DOC");
  }
};

class BeamSearchDecodeInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* context) const override {
210 211 212 213 214 215 216 217
    OP_INOUT_CHECK(context->HasInput("Ids"), "Input", "Ids",
                   "BeamSearchDecode");
    OP_INOUT_CHECK(context->HasInput("Scores"), "Input", "Scores",
                   "BeamSearchDecode");
    OP_INOUT_CHECK(context->HasOutput("SentenceIds"), "Output", "SentenceIds",
                   "BeamSearchDecode");
    OP_INOUT_CHECK(context->HasOutput("SentenceScores"), "Output",
                   "SentenceScores", "BeamSearchDecode");
Q
Qiao Longfei 已提交
218 219 220 221 222
  }
};

class BeamSearchDecodeInferVarType : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
223
  void operator()(framework::InferVarTypeContext* ctx) const override {
224 225 226 227
    ctx->SetOutputType("SentenceIds", framework::proto::VarType::LOD_TENSOR,
                       framework::ALL_ELEMENTS);
    ctx->SetOutputType("SentenceScores", framework::proto::VarType::LOD_TENSOR,
                       framework::ALL_ELEMENTS);
Q
Qiao Longfei 已提交
228 229 230 231 232 233
  }
};

}  // namespace operators
}  // namespace paddle

H
hong 已提交
234 235 236 237 238 239 240
REGISTER_OPERATOR(
    beam_search_decode, paddle::operators::BeamSearchDecodeOp,
    paddle::operators::BeamSearchDecodeOpProtoMaker,
    paddle::operators::BeamSearchDecodeInferShape,
    paddle::operators::BeamSearchDecodeInferVarType,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);