beam_search_decode_op.cc 8.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
16
#include <string>
17 18

#include "paddle/fluid/operators/beam_search_decode_op.h"
Y
Yi Wang 已提交
19
#include "paddle/fluid/platform/device_context.h"
Q
Qiao Longfei 已提交
20 21 22 23

namespace paddle {
namespace operators {

24 25 26
struct BeamSearchDecodeFunctor {
  BeamSearchDecodeFunctor(const LoDTensorArray& step_ids,
                          const LoDTensorArray& step_scores,
27 28 29 30 31
                          LoDTensor* id_tensor, LoDTensor* score_tensor,
                          size_t beam_size, int end_id)
      : beam_size_(beam_size),
        end_id_(end_id),
        step_ids_origin_(step_ids),
32
        step_scores_origin_(step_scores),
33
        id_tensor_(id_tensor),
34 35 36 37 38 39 40 41 42 43 44
        score_tensor_(score_tensor) {
    tensor_on_gpu_ = false;
    // First make a copy of GPU data on CPU
    if (platform::is_gpu_place(step_ids_origin_[0].place())) {
      tensor_on_gpu_ = true;
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      auto* dev_ctx = pool.Get(step_ids_origin_[0].place());
      // Copy all tensors in the input tensor array
      for (auto& step_id : step_ids_origin_) {
        framework::LoDTensor out;
45 46 47 48 49
        if (step_id.numel() > 0) {
          dev_ctx->Wait();
          framework::TensorCopy(step_id, platform::CPUPlace(), *dev_ctx, &out);
          dev_ctx->Wait();
        }
50 51 52 53 54 55 56 57 58 59 60 61 62

        out.set_lod(step_id.lod());
        step_ids_.push_back(out);
      }
    }
    if (platform::is_gpu_place(step_scores_origin_[0].place())) {
      tensor_on_gpu_ = true;
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      auto* dev_ctx = pool.Get(step_scores_origin_[0].place());
      // Copy all tensors in the input tensor array
      for (auto& step_score : step_scores_origin_) {
        framework::LoDTensor out;
63 64 65 66 67 68
        if (step_score.numel() > 0) {
          dev_ctx->Wait();
          framework::TensorCopy(step_score, platform::CPUPlace(), *dev_ctx,
                                &out);
          dev_ctx->Wait();
        }
69 70 71 72 73 74

        out.set_lod(step_score.lod());
        step_scores_.push_back(out);
      }
    }
  }
75 76 77 78

  template <typename T>
  void operator()() const;

79
  bool tensor_on_gpu_;
80 81
  size_t beam_size_;
  int end_id_;
82 83 84 85
  const LoDTensorArray& step_ids_origin_;
  const LoDTensorArray& step_scores_origin_;
  LoDTensorArray step_ids_ = LoDTensorArray();
  LoDTensorArray step_scores_ = LoDTensorArray();
86 87 88 89 90 91
  LoDTensor* id_tensor_;
  LoDTensor* score_tensor_;
};

template <typename T>
void BeamSearchDecodeFunctor::operator()() const {
92
  BeamSearchDecoder<T> beam_search_decoder(beam_size_, end_id_);
93 94
  // Check if the tensor is on GPU. If so, use the CPU copy instead
  if (tensor_on_gpu_) {
95 96
    beam_search_decoder.Backtrace(step_ids_, step_scores_, id_tensor_,
                                  score_tensor_);
97
  } else {
98 99
    beam_search_decoder.Backtrace(step_ids_origin_, step_scores_origin_,
                                  id_tensor_, score_tensor_);
100
  }
101 102 103 104 105 106 107
}

template <>
void BeamSearchDecodeFunctor::operator()<bool>() const {
  PADDLE_THROW("beam search decode op does not support bool!");
}

Q
Qiao Longfei 已提交
108 109 110 111 112 113 114
class BeamSearchDecodeOp : public framework::OperatorBase {
 public:
  BeamSearchDecodeOp(const std::string& type,
                     const framework::VariableNameMap& inputs,
                     const framework::VariableNameMap& outputs,
                     const framework::AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
115 116 117 118

 private:
  void RunImpl(const framework::Scope& scope,
               const platform::Place& dev_place) const override {
Y
Yu Yang 已提交
119 120
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto& dev_ctx = *pool.Get(dev_place);
D
dzhwinter 已提交
121

Q
Qiao Longfei 已提交
122
    framework::ExecutionContext ctx(*this, scope, dev_ctx);
123

Q
Qiao Longfei 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136
    const LoDTensorArray* ids = ctx.Input<LoDTensorArray>("Ids");
    const LoDTensorArray* scores = ctx.Input<LoDTensorArray>("Scores");
    const size_t step_num = ids->size();
    PADDLE_ENFORCE_GT(step_num, 0UL,
                      "beam search steps should be larger than 0");
    const size_t source_num = ids->at(0).lod().at(0).size() - 1;
    PADDLE_ENFORCE_GT(source_num, 0UL, "source num should be larger than 0");

    for (size_t i = 0; i < step_num; ++i) {
      PADDLE_ENFORCE_EQ(ids->at(i).lod().size(), 2UL,
                        "Level of LodTensor should be 2");
    }

137 138 139
    size_t beam_size = ctx.Attr<int>("beam_size");
    int end_id = ctx.Attr<int>("end_id");

Q
Qiao Longfei 已提交
140 141 142 143
    // prepare output
    LoDTensor* sentenceIds = ctx.Output<LoDTensor>("SentenceIds");
    LoDTensor* sentenceScores = ctx.Output<LoDTensor>("SentenceScores");

144 145
    framework::VisitDataType(
        framework::ToDataType(scores->at(0).type()),
146 147
        BeamSearchDecodeFunctor(*ids, *scores, sentenceIds, sentenceScores,
                                beam_size, end_id));
Q
Qiao Longfei 已提交
148 149 150 151 152
  }
};

class BeamSearchDecodeOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
153
  void Make() override {
Q
Qiao Longfei 已提交
154 155
    AddInput("Ids",
             "(LodTensorArray)"
156
             "The LodTensorArray containing the selected ids of all steps");
Q
Qiao Longfei 已提交
157 158
    AddInput("Scores",
             "(LodTensorArray)"
159 160 161 162 163 164 165 166 167 168
             "The LodTensorArray containing the selected scores of all steps");
    AddOutput(
        "SentenceIds",
        "(LodTensor)"
        "An LodTensor containing all generated id sequences for all source "
        "sentences");
    AddOutput(
        "SentenceScores",
        "(LodTensor)"
        "An LodTensor containing scores corresponding to Output(SentenceIds)");
169 170 171
    AddAttr<int>("beam_size", "beam size for beam search");
    AddAttr<int>("end_id",
                 "the token id which indicates the end of a sequence");
Q
Qiao Longfei 已提交
172
    AddComment(R"DOC(
173 174 175 176 177 178 179 180 181
Beam Search Decode Operator. This Operator constructs the full hypotheses for
each source sentence by walking back along the LoDTensorArray Input(ids)
whose lods can be used to restore the path in the beam search tree.

The Output(SentenceIds) and Output(SentenceScores) separately contain the 
generated id sequences and the corresponding scores. The shapes and lods of the 
two LodTensor are same. The lod level is 2 and the two levels separately 
indicate how many hypotheses each source sentence has and how many ids each 
hypothesis has.
Q
Qiao Longfei 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
)DOC");
  }
};

class BeamSearchDecodeInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* context) const override {
    PADDLE_ENFORCE(context->HasInput("Ids"),
                   "BeamSearchDecodeOp must has input Ids");
    PADDLE_ENFORCE(context->HasInput("Scores"),
                   "BeamSearchDecodeOp must has input Scores");
    PADDLE_ENFORCE(context->HasOutput("SentenceIds"),
                   "BeamSearchDecodeOp must has output SentenceIds");
    PADDLE_ENFORCE(context->HasOutput("SentenceScores"),
                   "BeamSearchDecodeOp must has output SentenceScores");
  }
};

class BeamSearchDecodeInferVarType : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
202 203
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
Q
Qiao Longfei 已提交
204
    for (auto& o : op_desc.Output("SentenceIds")) {
205 206
      auto& sentence_ids = block->FindRecursiveOrCreateVar(o);
      sentence_ids.SetType(framework::proto::VarType::LOD_TENSOR);
Q
Qiao Longfei 已提交
207 208
    }
    for (auto& o : op_desc.Output("SentenceScores")) {
209 210
      auto& sentence_scores = block->FindRecursiveOrCreateVar(o);
      sentence_scores.SetType(framework::proto::VarType::LOD_TENSOR);
Q
Qiao Longfei 已提交
211 212 213 214 215 216 217 218 219 220 221 222
    }
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OPERATOR(beam_search_decode, paddle::operators::BeamSearchDecodeOp,
                  paddle::operators::BeamSearchDecodeOpProtoMaker,
                  paddle::operators::BeamSearchDecodeInferShape,
                  paddle::operators::BeamSearchDecodeInferVarType,
                  paddle::framework::EmptyGradOpMaker);